提升R代码运算效率的11个实用方法——并行、效率
转载于36大数据,原文作者:Selva Prabhakaran 译者:fibears
众所周知,当我们利用R语言处理大型数据集时,for循环语句的运算效率非常低。有许多种方法可以提升你的代码运算效率,但或许你更想了解运算效率能得到多大的提升。本文将介绍几种适用于大数据领域的方法,包括简单的逻辑调整设计、并行处理和Rcpp的运用,利用这些方法你可以轻松地处理1亿行以上的数据集。
让我们尝试提升往数据框中添加一个新变量过程(该过程中包含循环和判断语句)的运算效率。下面的代码输出原始数据框:
# Create the data frame
col1 <- runif (12^5, 0, 2)
col2 <- rnorm (12^5, 0, 2)
col3 <- rpois (12^5, 3)
col4 <- rchisq (12^5, 2)
df <- data.frame (col1, col2, col3, col4)
逐行判断该数据框(df)的总和是否大于4,如果该条件满足,则对应的新变量数值为’greaterthan4’,否则赋值为’lesserthan4’。
本文中所有的计算都在配置了2.6Ghz处理器和8GB内存的MAC OS X中运行。
1.向量化处理和预设数据库结构
循环运算前,记得预先设置好数据结构和输出变量的长度和类型,千万别在循环过程中渐进性地增加数据长度。接下来,我们将探究向量化处理是如何提高处理数据的运算速度。
2.将条件语句的判断条件移至循环外
将条件判断语句移至循环外可以提升代码的运算速度,接下来本文将利用包含100,000行数据至1,000,000行数据的数据集进行测试:
3.只在条件语句为真时执行循环过程
另一种优化方法是预先将输出变量赋值为条件语句不满足时的取值,然后只在条件语句为真时执行循环过程。此时,运算速度的提升程度取决于条件状态中真值的比例。
本部分的测试将和case(2)部分进行比较,和预想的结果一致,该方法确实提升了运算效率。
4.尽可能地使用 ifelse()语句
利用ifelse()语句可以使你的代码更加简便。ifelse()的句法格式类似于if()函数,但其运算速度却有了巨大的提升。即使是在没有预设数据结构且没有简化条件语句的情况下,其运算效率仍高于上述的两种方法。
5.使用 which()语句
利用which()语句来筛选数据集,我们可以达到Rcpp三分之一的运算速率。
6.利用apply族函数来替代for循环语句
本部分将利用apply()函数来计算上文所提到的案例,并将其与向量化的循环语句进行对比。该方法的运算效率优于原始方法,但劣于ifelse()和将条件语句置于循环外端的方法。该方法非常有用,但是当你面对复杂的情形时,你需要灵活运用该函数。
7.利用compiler包中的字节码编译函数cmpfun()
这可能不是说明字节码编译有效性的最好例子,但是对于更复杂的函数而言,字节码编译将会表现地十分优异,因此我们应当了解下该函数。
8.利用Rcpp
截至目前,我们已经测试了好几种提升运算效率的方法,其中最佳的方法是利用ifelse()函数。如果我们将数据量增大十倍,运算效率将会变成啥样的呢?接下来我们将利用Rcpp来实现该运算过程,并将其与ifelse()进行比较。
下面是利用C++语言编写的函数代码,将其保存为“MyFunc.cpp”并利用sourceCpp进行调用。
9.利用并行运算
并行运算的代码:
10.尽早地移除变量并恢复内存容量
在进行冗长的循环计算前,尽早地将不需要的变量移除掉。在每次循环迭代运算结束时利用gc()函数恢复内存也可以提升运算速率。
11.利用内存较小的数据结构
data.table()是一个很好的例子,因为它可以减少数据的内存,这有助于加快运算速率。
总结
方法:速度, nrow(df)/time_taken = n 行每秒
原始方法:1X, 856.2255行每秒(正则化为1)
向量化方法:738X, 631578行每秒
只考虑真值情况:1002X,857142.9行每秒
ifelse:1752X,1500000行每秒
which:8806X,7540364行每秒
Rcpp:13476X,11538462行每秒
End.
提升R代码运算效率的11个实用方法——并行、效率的更多相关文章
- 提升R代码运算效率的11个实用方法
提升R代码运算效率的11个实用方法 众所周知,当我们利用R语言处理大型数据集时,for 循环语句的运算效率非常低.有许多种方法可以提升你的代码运算效率,但或许你更想了解运算效率能得到多大的提升.本文将 ...
- 【R】提升R代码运算效率的11个实用方法
低.有许多种方法可以提升你的代码运算效率,但或许你更想了解运算效率能得到多大的提升.本文将介绍几种适用于大数据领域的方法,包括简单的逻辑调整设计.并行处理和Rcpp的运用,利用这些方法你可以轻松地处理 ...
- R语言学习笔记(二十一五):如何如何提升R语言运算的性能以及速度
在R中获得快速运行代码的方法 使用向量化运算 R语言的并行计算可以用parallel和foreach包 加快R运行速度还可以使用cmpfun()函数即字节码编译器 再者就是在R中调用C或C++ 同时还 ...
- 高效完成R代码
为什么R有时候运行慢? 参考https://www.cnblogs.com/qiaoyihang/p/7779144.html 一.为什么R程序有时候会很慢? 1.计算性能的三个限制条件 cpu ra ...
- 值得细读!如何系统有效地提升Android代码的安全性?
众所周知,代码安全是Android开发工作中的一大核心要素. 11月3日,安卓巴士全球开发者论坛线下系列沙龙第七站在成都顺利举办.作为中国领先的安卓开发者社区,安卓巴士近年来一直致力于在全国各大城市举 ...
- regression | p-value | Simple (bivariate) linear model | 线性回归 | 多重检验 | FDR | BH | R代码
P122, 这是IQR method课的第一次作业,需要统计检验,x和y是否显著的有线性关系. Assignment 1 1) Find a small bivariate dataset (pref ...
- <转>机器学习系列(9)_机器学习算法一览(附Python和R代码)
转自http://blog.csdn.net/han_xiaoyang/article/details/51191386 – 谷歌的无人车和机器人得到了很多关注,但我们真正的未来却在于能够使电脑变得更 ...
- 机器学习算法的基本知识(使用Python和R代码)
本篇文章是原文的译文,然后自己对其中做了一些修改和添加内容(随机森林和降维算法).文章简洁地介绍了机器学习的主要算法和一些伪代码,对于初学者有很大帮助,是一篇不错的总结文章,后期可以通过文中提到的算法 ...
- R代码展示各种统计学分布 | 生物信息学举例
二项分布 | Binomial distribution 泊松分布 | Poisson Distribution 正态分布 | Normal Distribution | Gaussian distr ...
随机推荐
- [Nginx]单机环境的多应用配置
# 服务层 # https://github.com/farwish/alconservice # alconservice.conf server { listen 8090; root /home ...
- 关于Java中equal 和 == 的区别
在对Java开发还不熟练的时候,往往很多人都喜欢用==去比较两个对象是否相等,有时候就会出现很奇葩的问题. 其实这类问题并不是奇葩问题,只是我们不够细心而已,在Java中“==”比较两个变量本身的值, ...
- BZOJ 3160: 万径人踪灭 [fft manacher]
3160: 万径人踪灭 题意:求一个序列有多少不连续的回文子序列 一开始zz了直接用\(2^{r_i}-1\) 总-回文子串 后者用manacher处理 前者,考虑回文有两种对称形式(以元素/缝隙作为 ...
- S5PV210时钟,看门狗定时器
晶振:时钟源(操作主要有两个,倍频,分频) A8的时钟源: 时钟域,每个时钟域(不同的最高频率和最低频率)管理着不同的电路模块: 不同的时钟域对应不同电路模块表 时钟电路:懂得看时钟电路(时钟源选择开 ...
- [Python Study Notes]批量将ppt转换为pdf v1.0
''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' ...
- 在Windows下为PHP5.5安装redis扩展
使用phpinfo()函数查看PHP的版本信息,这会决定扩展文件版本 根据PHP版本号,编译器版本号和CPU架构, 选择php_redis-2.2.5-5.5-ts-vc11-x86.zip和ph ...
- LVS的DR设置测试
dir: ipvsadm -C 清空之前ipvsadm iptables -t nat -F 防火墙规则清空v rs1,rs2: vi /etc/sysconfig/network-scrip ...
- 原生js总结(干货)
1.js基本数据类型 number string boolean underfined null 2.查找文档中的特定元素 document.getElementById("id" ...
- LCA—倍增法求解
LCA(Least Common Ancestors) 即最近公共祖先,是指在有根树中,找出某两个结点u和v最近的公共祖先. 常见解法一般有三种 这里讲解一种在线算法-倍增 首先我们定义fa[u][j ...
- 2、flask之基础知识点
本篇导航: 路由系统 视图函数 请求与响应 模版语法 session 蓝图(blueprint).闪现 (flash) 扩展 一.路由系统 1.可传入参数: @app.route('/user/< ...