[BJOI2019]排兵布阵(动态规划)

题面

洛谷

题解

暴力dp:

设\(f[i][j]\)表示考虑到了第\(i\)座城市用了\(j\)人的最大收益,枚举在这个城市用多少人就可以了。

优化:

发现用的人数一定是某个敌人的人数的二倍加一,那么决策只有\(O(s)\)个。

时间复杂度\(O(snm)\)。(不满)

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int S,n,m,f[101][20020];
vector<int> A[105];
int main()
{
S=read();n=read();m=read();
for(int i=1;i<=S;++i)
for(int j=1;j<=n;++j)A[j].push_back(read());
for(int i=1;i<=n;++i)sort(A[i].begin(),A[i].end());
memset(f,-63,sizeof(f));f[0][0]=0;
for(int i=1,s=0;i<=n;++i)
{
int l=A[i].size()-1;
for(int p=-1;p<=l&&2*A[i][p]+1<=m;++p)
{
int j=(~p)?2*A[i][p]+1:0;
for(int k=0;k<=s&&k+j<=m;++k)
f[i][j+k]=max(f[i][j+k],f[i-1][k]+i*(p+1));
}
s+=A[i][l]*2+1;
}
int ans=0;
for(int i=0;i<=m;++i)ans=max(ans,f[n][i]);
printf("%d\n",ans);
return 0;
}

[BJOI2019]排兵布阵(动态规划)的更多相关文章

  1. [BJOI2019]排兵布阵——分组背包

    题目链接: [BJOI2019]排兵布阵 对于每座堡垒,将$s$个对手排序,显然如果安排的兵力能打败第$i$个对手就一定能打败前$i-1$个. 那么对于第$i$座城堡,可以看做有$s+1$个物品(可以 ...

  2. [BJOI2019]排兵布阵 DP

    [BJOI2019]排兵布阵 DP 比较好想的DP,设\(dp[i][j]\)表示第\(i\)个城堡时,已派出\(j\)个士兵.决策时,贪心派出恰好严格大于某一玩家派出的数量的两倍(不然浪费).我们发 ...

  3. luogu P5322 [BJOI2019]排兵布阵

    传送门 普及dp 设\(f_{i,j}\)表示前\(i\)个城堡,用\(j\)人的最大价值,转移枚举一个对手,如果这个对手在\(i\)这个城堡人数是第\(k\)小的,那么用\(2a_i+1\)人可以得 ...

  4. [BJOI2019] 排兵布阵

    题目 这个\(dp\)出在普及都算水题吧 直接背包,\(O(nms)\)跑不满,非常稳 #include<cstdio> #include<vector> #include&l ...

  5. LuoguP5322 [BJOI2019]排兵布阵(DP)

    城为物,人为容,价值?排序后,一切都明了 #include <iostream> #include <cstdio> #include <cstring> #inc ...

  6. 【LOJ】#3092. 「BJOI2019」排兵布阵

    LOJ#3092. 「BJOI2019」排兵布阵 这题就是个背包啊,感觉是\(nms\)的但是不到0.2s,发生了什么.. 就是设\(f[i]\)为选了\(i\)个人最大的代价,然后有用的人数只有\( ...

  7. HDU-4539郑厂长系列故事——排兵布阵(状态压缩,动态规划)

    郑厂长系列故事--排兵布阵 Time Limit : 10000/5000ms (Java/Other) Memory Limit : 65535/32768K (Java/Other) Total ...

  8. HDU 4539郑厂长系列故事――排兵布阵(状压DP)

    HDU 4539  郑厂长系列故事――排兵布阵 基础的状压DP,首先记录先每一行可取的所哟状态(一行里互不冲突的大概160个状态), 直接套了一个4重循环居然没超时我就呵呵了 //#pragma co ...

  9. HDU 4539 郑厂长系列故事——排兵布阵

    http://acm.hdu.edu.cn/showproblem.php?pid=4539 郑厂长系列故事——排兵布阵 Time Limit: 10000/5000 MS (Java/Others) ...

随机推荐

  1. jQuery(五)、筛选

    1 过滤 1.eq(index | -index) 获取第N个元素,index为元素索引,-index值基于最后一个元素的位置(从 1 开始) 2.first() 获取第一个元素 3.last() 获 ...

  2. C#实现多级子目录Zip压缩解压实例

          参考 https://blog.csdn.net/lki_suidongdong/article/details/20942977 重点: 实现多级子目录的压缩,类似winrar,可以选择 ...

  3. matplotlib箱线图与柱状图比较

    代码: # -*- coding: utf-8 -*- """ Created on Thu Jul 12 16:37:47 2018 @author: zhen &qu ...

  4. 字符串转数字练习--String to Integer (atoi)

    Implement atoi which converts a string to an integer. The function first discards as many whitespace ...

  5. java8新特性-默认方法

    作为一个java程序猿,经常会被问基础怎么样,对于这个问题,我理解的有两方面:一是对于java基础的理解和掌握,比如JDK的相关特性:二是工作的经历,毕竟,语言编程是一门实战性质的艺术,就算掌握了千万 ...

  6. iBatis第三章:iBatis的基本用法

    iBatis 在DAO层的用法很基础,和一般 JDBC 用法没太多的不同之处,主要是实现数据的持久化.它的优势是用法比较灵活,可以根据业务需要,写出适应需要的sql,其使用简单,只要会使用sql,就能 ...

  7. WDS和DHCP配置说明

    网络启动程序 (NBP) 是网络启动过程中第一个下载和执行的文件,它可以控制启动开始时的体验(例如,用户是否必须按 F12 才能开始网络启动) WDS服务器配置说明: 1)如果WDS和DHCP安装在同 ...

  8. 【记录】使用在线KMS激活win10系统

    摘要 网上一些激活工具可能捆绑了木马.病毒.使用激活工具有风险.使用在线KMS来激活系统则没有这个风险.(自测至发布日期仍然可用) (有能力的请支持正版windows系统) 将kms服务器地址设置为k ...

  9. IDEA导入项目jar包红线、依赖问题....

    一般遇到这种情况用以下两种方式解决....... 1.reimport包 2.清缓存重启 针对1方法: a.确实不缺包: 可以先注释掉pom文件中的jar包, 此时idea会提示import, 那就i ...

  10. java中异常处理finally和return的执行顺序

    根据个人亲自测试,得出如下结果: 1.try,catch中有没有return,finnally都会执行,而且是先执行try,catch后,最后执行finnally语句: 2.如果finnally中有r ...