Loj #2192. 「SHOI2014」概率充电器
Loj #2192. 「SHOI2014」概率充电器
题目描述
著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:
「采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率充电器,您生
活不可或缺的必需品!能充上电吗?现在就试试看吧!」
SHOI 概率充电器由 \(n-1\) 条导线连通了 \(n\) 个充电元件。进行充电时,每条导线是否可以导电以
概率决定,每一个充电元件自身是否直接进行充电也由概率决定。随后电能可以从直接充电的元件经过
通电的导线使得其他充电元件进行间接充电。
作为 SHOI 公司的忠实客户,你无法抑制自己购买 SHOI 产品的冲动。在排了一个星期的长队之后终
于入手了最新型号的 SHOI 概率充电器。你迫不及待地将 SHOI 概率充电器插入电源——这时你突然想
知道,进入充电状态的元件个数的期望是多少呢?
输入格式
第一行一个整数 \(n\),概率充电器的充电元件个数,充电元件由 \(1 \sim n\) 编号。
之后的 \(n-1\) 行每行三个整数 \(a, b, p\),描述了一根导线连接了编号为 \(a\) 和 \(b\) 的充电元
件,通电概率为 \(p\, \%\)。
第 \(n+2\) 行 \(n\) 个整数 \(q_1,\ldots,q_n\)。表示 \(i\) 号元件直接充电的概率为 \(q_i\, \%\)。
输出格式
输出一行一个实数,为进入充电状态的元件个数的期望,四舍五入到六位小数。
数据范围与提示
对于 \(100\%\) 的数据,\(n \leq 500000,\ 0 \leq p,q_i \leq 100\)。
\(\\\)
根据期望的线性性,我们统计每个点通电出现的概率。发现统计每个点不通电的概率好统计些,也就是该点所在联通块一个点都不通电。
上下两次树形\(DP\)就搞定了。
代码:
#include<bits/stdc++.h>
#define ll long long
#define N 500005
using namespace std;
inline int Get() {int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}while('0'<=ch&&ch<='9') {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}return x*f;}
int n;
struct road {
int to,nxt;
double p;
}s[N<<1];
int h[N],cnt;
void add(int i,int j,double p) {
s[++cnt]=(road) {j,h[i],p};h[i]=cnt;
}
double f[N];
double up[N];
double q[N];
void dfs(int v,int fr) {
f[v]=1-q[v];
for(int i=h[v];i;i=s[i].nxt) {
int to=s[i].to;
if(to==fr) continue ;
dfs(to,v);
f[v]=f[v]*(s[i].p*f[to]+(1.0-s[i].p));
}
}
double pre[N],suf[N];
double ans;
void dfs2(int v,int fr) {
ans+=1.0-f[v]*up[v];
vector<int>tem;
vector<double>E;
tem.clear();
E.clear();
for(int i=h[v];i;i=s[i].nxt) {
int to=s[i].to;
if(to==fr) continue ;
tem.push_back(to);
E.push_back(s[i].p);
suf[to]=pre[to]=s[i].p*f[to]+(1.0-s[i].p);
}
for(int i=1;i<tem.size();i++) pre[tem[i]]=pre[tem[i]]*pre[tem[i-1]];
for(int i=tem.size()-2;i>=0;i--) suf[tem[i]]=suf[tem[i]]*suf[tem[i+1]];
for(int i=0;i<tem.size();i++) {
int to=tem[i];
double now=1;
if(i>0) now=now*pre[tem[i-1]];
if(i<tem.size()-1) now=now*suf[tem[i+1]];
up[to]=up[v]*now*(1.0-q[v])*E[i]+(1.0-E[i]);
dfs2(to,v);
}
}
int main() {
n=Get();
int a,b,p;
for(int i=1;i<n;i++) {
a=Get(),b=Get(),p=Get();
add(a,b,1.0*p/100);
add(b,a,1.0*p/100);
}
for(int i=1;i<=n;i++) q[i]=1.0*Get()/100;
dfs(1,0);
up[1]=1;
dfs2(1,0);
cout<<fixed<<setprecision(6)<<ans;
return 0;
}
Loj #2192. 「SHOI2014」概率充电器的更多相关文章
- 「SHOI2014」概率充电器
题面 n <= 500000 0<= p,qi <= 100 题解 这是道概率树形DP题,但是很难推怎么用加法原理和乘法原理正向求每个点被充电的概率,所以我们求每个点不被充电的概 ...
- [LOJ 2190] 「SHOI2014」信号增幅仪
[LOJ 2190] 「SHOI2014」信号增幅仪 链接 链接 题解 坐标系直到 \(x\) 轴与椭圆长轴平行 点的坐标变换用旋转公式就可以了 因为是椭圆,所以所有点横坐标除以 \(p\) 然后最小 ...
- LOJ#2190. 「SHOI2014」信号增幅仪(最小圆覆盖)
题面 传送门 题解 我连椭圆是个啥都不知道导致这么简单一道题我一点思路都没有-- 我们把坐标系旋转一下,让半长轴成为新的\(x\)轴,也就是说所有点都绕原点逆时针旋转\(360-a\)度,然后再把所有 ...
- Loj #2542. 「PKUWC2018」随机游走
Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次 ...
- loj#2076. 「JSOI2016」炸弹攻击 模拟退火
目录 题目链接 题解 代码 题目链接 loj#2076. 「JSOI2016」炸弹攻击 题解 模拟退火 退火时,由于答案比较小,但是温度比较高 所以在算exp时最好把相差的点数乘以一个常数让选取更差的 ...
- loj#2552. 「CTSC2018」假面
题目链接 loj#2552. 「CTSC2018」假面 题解 本题严谨的证明了我菜的本质 对于砍人的操作好做找龙哥就好了,blood很少,每次暴力维护一下 对于操作1 设\(a_i\)为第i个人存活的 ...
- loj#2537. 「PKUWC2018」Minimax
题目链接 loj#2537. 「PKUWC2018」Minimax 题解 设\(f_{u,i}\)表示选取i的概率,l为u的左子节点,r为u的子节点 $f_{u,i} = f_{l,i}(p \sum ...
- Loj #3044. 「ZJOI2019」Minimax 搜索
Loj #3044. 「ZJOI2019」Minimax 搜索 题目描述 九条可怜是一个喜欢玩游戏的女孩子.为了增强自己的游戏水平,她想要用理论的武器武装自己.这道题和著名的 Minimax 搜索有关 ...
- Loj #3045. 「ZJOI2019」开关
Loj #3045. 「ZJOI2019」开关 题目描述 九条可怜是一个贪玩的女孩子. 这天,她和她的好朋友法海哥哥去玩密室逃脱.在他们面前的是 \(n\) 个开关,开始每个开关都是关闭的状态.要通过 ...
随机推荐
- Manifest文件的最新理解
今天看了Manifest文件内容的相关视频,感觉对知识的理解深刻了一些: 首先,先来说说这个文件的作用,这个文件可以说是聚集了很多个标签,其实对于每个主标签,在将来编译的时候,都会被处理成一个类,而标 ...
- 写个批处理脚本来帮忙干活--遍历文件夹&字符串处理
这次打算写几篇关于脚本方面的博客,主要是记录一下 Gradle 脚本和批处理脚本的一些写法,方便后续查阅. 前言 平常开发过程中,一些较为重复的手工性工作,如果能让脚本来帮忙处理,自然是最好的,刚好之 ...
- Mongodb数据库操作
mysql/mongodb对比 CREATE TABLE USERS (a Number, b Number) Implicit or use MongoDB::createCollection() ...
- 开机出现loading (hd0)/ntldr。。。
电脑一开机就出现ntldr is missing的原因:1.操作系统文件损坏.2.MBR表损坏.3.硬盘数据线松了.4.硬盘坏了.解决方法:1.重新安装操作系统.2.用U盘或光盘引导,进入PE系统,用 ...
- instrument(2)
学习了instrument之后试着自己写点东西,上一篇的例子中使用的是asm,毕竟是面向字节码的,api还是比较复杂的.其实有时候的需求很简单,无非就是看下类里的方法啊之类的.javassist是基于 ...
- 基于ELK5.1(ElasticSearch, Logstash, Kibana)的一次整合测试
前言开源实时日志分析ELK平台(ElasticSearch, Logstash, Kibana组成),能很方便的帮我们收集日志,进行集中化的管理,并且能很方便的进行日志的统计和检索,下面基于ELK的最 ...
- 毕业原版=[约克大学毕业证书]York原件一模一样证书
约克大学毕业证[微/Q:2544033233◆WeChat:CC6669834]UC毕业证书/联系人Alice[查看点击百度快照查看][留信网学历认证&博士&硕士&海归& ...
- Spring工厂方法(factory-bean)配置bean
在spring的世界中, 我们通常会利用bean config file 或者 annotation注解方式来配置bean. 在第一种利用bean config file(spring xml)方式中 ...
- Spark学习之RDD编程总结
Spark 对数据的核心抽象——弹性分布式数据集(Resilient Distributed Dataset,简称 RDD).RDD 其实就是分布式的元素集合.在 Spark 中,对数据的所有操作不外 ...
- 《前端之路》之 Javascript 模块化管理的来世今生
目录 第二章 - 04: Javascript 模块化管理的来世今生 一.什么是模块化开发 1-1.模块化第一阶段 1-2.封装到对象 1-3. 对象的优化 二.模块化管理的发展历程 2-1.Comm ...