1405 树的距离之和

基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题
 
给定一棵无根树,假设它有n个节点,节点编号从1到n, 求任意两点之间的距离(最短路径)之和。
Input
第一行包含一个正整数n (n <= 100000),表示节点个数。
后面(n - 1)行,每行两个整数表示树的边。
Output
每行一个整数,第i(i = 1,2,...n)行表示所有节点到第i个点的距离之和。
Input示例
4
1 2
3 2
4 2
Output示例
5
3
5
5
/*
51 nod 1405 树的距离之和 problem:
给定一棵无根树,假设它有n个节点,节点编号从1到n, 对于每个i求所有点到i的和。 solve:
假设已经知道了所有点到u的和, 对于它右儿子v的和,可以发现增加了Size[左子树]条uv边.减少了Size[v]条uv边
所以先求出所有点到1的和,然后可以推出其它所有点 hhh-2016/09/13-20:15:59
*/
#pragma comment(linker,"/STACK:124000000,124000000")
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <vector>
#include <math.h>
#include <queue>
#include <set>
#include <map>
#define lson i<<1
#define rson i<<1|1
#define ll long long
#define clr(a,b) memset(a,b,sizeof(a))
#define scanfi(a) scanf("%d",&a)
#define scanfs(a) scanf("%s",a)
#define scanfl(a) scanf("%I64d",&a)
#define scanfd(a) scanf("%lf",&a)
#define key_val ch[ch[root][1]][0]
#define eps 1e-7
#define inf 0x3f3f3f3f3f3f3f3f
using namespace std;
const int maxn = 100110; template<class T> void read(T&num)
{
char CH;
bool F=false;
for(CH=getchar(); CH<'0'||CH>'9'; F= CH=='-',CH=getchar());
for(num=0; CH>='0'&&CH<='9'; num=num*10+CH-'0',CH=getchar());
F && (num=-num);
}
int stk[70], tp;
template<class T> inline void print(T p)
{
if(!p)
{
puts("0");
return;
}
while(p) stk[++ tp] = p%10, p/=10;
while(tp) putchar(stk[tp--] + '0');
putchar('\n');
} ll ans[maxn];
struct node
{
int to,next;
}edge[maxn <<2]; int tot,n;
int head[maxn];
int Size[maxn];
ll f[maxn];
void add_edge(int u,int v)
{
edge[tot].to = v,edge[tot].next = head[u],head[u] = tot ++;
} void dfs(int u,ll len,int pre)
{
f[u] = len;
Size[u] = 1;
for(int i = head[u]; i != -1;i = edge[i].next )
{
int v = edge[i].to;
if(v == pre)
continue;
dfs(v,len+1,u);
Size[u] += Size[v];
}
} void solve(int u,ll tans,int pre)
{
ans[u] = tans;
for(int i = head[u];i != -1;i = edge[i].next)
{
int v = edge[i].to;
if(v == pre)
continue;
ll t = n-Size[v]*2;
solve(v, (ll)tans + t,u);
}
} void init()
{
tot = 0;
clr(head,-1);
} int main()
{
int u,v;
while(scanfi(n) != EOF)
{
init();
for(int i = 1;i < n;i++)
{
scanfi(u),scanfi(v);
add_edge(u,v);
add_edge(v,u);
}
dfs(1,0,-1);
ll ta = 0;
for(int i =1;i <= n;i++)
ta += f[i];
solve(1,ta,-1);
for(int i = 1;i <= n;i++)
{
print(ans[i]);
}
}
}

  

51 nod 1405 树的距离之和的更多相关文章

  1. 51nod 1405 树的距离之和 树形dp

    1405 树的距离之和 基准时间限制:1 秒 空间限制:131072 KB   收藏  关注 给定一棵无根树,假设它有n个节点,节点编号从1到n, 求任意两点之间的距离(最短路径)之和. Input ...

  2. 51Nod - 1405 树的距离之和(树形DP)

    1405 树的距离之和 题意 给定一棵无根树,假设它有n个节点,节点编号从1到n,求任意两点之间的距离(最短路径)之和. 分析 树形DP. 首先我们让 \(1\) 为根.要开两个数组 \(up \ d ...

  3. 51Nod 1405 树的距离之和(dp)

    1405 树的距离之和 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题  收藏  关注 给定一棵无根树,如果它有n个节点,节点编号从1到n, 求随意两点之间的距离( ...

  4. 51nod 1405 树的距离之和(dfs)

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1405 题意: 思路: 先求出所有点到根节点的距离,需要维护每棵子树的大小 ...

  5. 51Nod 1405 树的距离之和 (树dp)

    题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1405 中文题面不解释了,两次dfs,第一次自下向上,第二次自上 ...

  6. [51NOD1405] 树的距离之和(树DP)

    题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1405 (1)我们给树规定一个根.假设所有节点编号是0-(n-1 ...

  7. 51 NOD 1239 欧拉函数之和(杜教筛)

    1239 欧拉函数之和 基准时间限制:3 秒 空间限制:131072 KB 分值: 320 难度:7级算法题 收藏 关注 对正整数n,欧拉函数是小于或等于n的数中与n互质的数的数目.此函数以其首名研究 ...

  8. 51 Nod 1110距离之和最小V3

    1110 距离之和最小 V3 1 秒 131,072 KB 40 分 4 级题 X轴上有N个点,每个点除了包括一个位置数据X[i],还包括一个权值W[i].点P到点P[i]的带权距离 = 实际距离 * ...

  9. 51 nod 1766 树上的最远点对(线段树+lca)

    1766 树上的最远点对 基准时间限制:3 秒 空间限制:524288 KB 分值: 80 难度:5级算法题   n个点被n-1条边连接成了一颗树,给出a~b和c~d两个区间,表示点的标号请你求出两个 ...

随机推荐

  1. Beta阶段敏捷冲刺报告-DAY2

    Beta阶段敏捷冲刺报告-DAY2 Scrum Meeting 敏捷开发日期 2017.11.3 会议时间 13:00 会议地点 微信群 参会人员 项目组全体成员 会议内容 打包问题修复, 爬虫优化, ...

  2. jvm垃圾收集器总结jdk1.7

    内存 ● 线程私有:程序计数器,虚拟机栈,本地方法栈 ● 线程共享: 方法区,堆 判断存活算法 ● 引用计数法:无法解决循环引用问题. ● 可达性分析算法: 从GCRoot作为起始点,向下搜索,经过的 ...

  3. LightningChart最新版 v.8.3 全新发布,新功能使用教程。

    LightningChart最新版v.8.3全新发布,主要介绍以下五个新功能及使用教程.   1. 网格模型,三角鼠标追踪 Tracing MeshModels with mouse. Traced ...

  4. Python模块configparser(操作配置文件ini)

    configparser模块提供对ini文件的增删改查方法. ini文件的数据格式: [name1] attribute1=value1 attribute2=value2 [name2] attri ...

  5. VMware vCenter Server 6.5.0 U1

    VMware vCenter Server 6.5.0 U1gName: VMware-VCSA-all-6.5.0-8024368.iso Release Date: 2018-03-20 Buil ...

  6. AssemblyExecuteAdapter

    BizTalk custom adapter AssemblyExecuteAdapter 功能 更为方便的扩展BizTalk custom adapter 的交互方式,只需要实现IAssemblyE ...

  7. Python内置函数(65)——staticmethod

    英文文档: staticmethod(function) Return a static method for function. A static method does not receive a ...

  8. 如何将portfolio产品图片上的悬停去掉?

    在Avada主题里,文章和portfolio的分类界面的图片,鼠标移入后都会出现这个东西 那么如何把它去掉,改为直接点击产品图片后进入产品详情页呢? 在theme option里搜索image rol ...

  9. OAuth2.0学习(1-3)OAuth2.0的参与者和流程

    OAuth(开放授权)是一个开放标准.允许第三方网站在用户授权的前提下访问在用户在服务商那里存储的各种信息.而这种授权无需将用户提供用户名和密码提供给该第三方网站. OAuth允许用户提供一个令牌给第 ...

  10. 关于ZK框架的onScroll事件的问题

    由于我现在所在的公司用到的zk框架,遇到了一个需求frozen on top. 简单来说就是滚动超过范围后,希望有一块东西停留在滚动窗口的顶部. 一.zk框架 查看了zk的8.x版本,发现组件的支持的 ...