[UOJ]#36. 【清华集训2014】玛里苟斯
题目大意:给n个数字,求子集的异或和的k次方的期望(n<=10^5,k<=5,保证答案小于2^63)
做法:首先如果从集合中拿出a和b,把a和a xor b放回集合,子集的异或和与原来是一一对应的,用高斯消元的思想可以消到只剩log个数,其他都是0,对答案没有影响。然后考虑k次方的期望,我们把二进制下每一位拆开,假设第i位的数字为xi,答案为(x1+x2+...+xlog)^k的期望,展开式子后发现是选k次x1~xlog中的数(可以重复选),每种选法选的位的乘积的期望的和,暴力枚举每种选法,复杂度为log^k(显然在k比较大时,由于答案范围限制,log不会太大,所以复杂度可以接受),一种选法只有选出的位都为1才对答案有贡献,列出方程然后高斯消元计算合法方案,每种方案的贡献必然是2的次幂并且幂数最小为-1,运算时直接记是多少次幂,算完再乘个2加入答案,最后判是否是奇数输出.5即可。
代码:
#include<cstdio>
#include<cstring>
#define ll unsigned long long
ll read()
{
ll x;char c;
while((c=getchar())<''||c>'');
for(x=c-'';(c=getchar())>=''&&c<='';)x=x*+c-'';
return x;
}
ll z[],ans;
int mx,k,a[],t[];
void dfs(int x)
{
if(x==k)
{
int i,j,x,s=;
memset(t,,sizeof(t));
for(i=;i<=mx;++i)if(z[i])
{
for(x=j=;j<k;++j)x|=int(bool(z[i]&(1ULL<<a[j])))<<j;
for(j=k;j--;)if(x&(<<j))t[j]?:(t[j]=x,--s),x^=t[j];
}
for(x=(<<k)-,i=k;i--;s+=a[i])if(x&(<<i))x^=t[i];
if(!x)ans+=1ULL<<s;
return;
}
for(int i=;i<=mx;++i)a[x]=i,dfs(x+);
}
int main()
{
int n,i;
n=read();k=read();
while(n--)
{
ll x=read();
for(i=;i--;)if(x&(1ULL<<i))z[i]?:z[i]=x,x^=z[i];
}
for(mx=;mx--;)if(z[mx])break;
dfs();
printf("%lld%s",ans>>,ans&?".5":"");
}
[UOJ]#36. 【清华集训2014】玛里苟斯的更多相关文章
- uoj #46[清华集训2014]玄学
uoj 因为询问是关于一段连续区间内的操作的,所以对操作构建线段树,这里每个点维护若干个不交的区间,每个区间\((l,r,a,b)\)表示区间\([l,r]\)内的数要变成\(ax+b\) 每次把新操 ...
- UOJ.41.[清华集训2014]矩阵变换(稳定婚姻)
题目链接 稳定婚姻问题:有n个男生n个女生,每个男/女生对每个女/男生有一个不同的喜爱程度.给每个人选择配偶. 若不存在 x,y未匹配,且x喜欢y胜过喜欢x当前的配偶,y喜欢x也胜过y当前的配偶 的完 ...
- bzoj 3816&&uoj #41. [清华集训2014]矩阵变换
稳定婚姻问题: 有n个男生,n个女生,所有女生在每个男生眼里有个排名,反之一样. 将男生和女生两两配对,保证不会出现婚姻不稳定的问题. 即A-1,B-2 而A更喜欢2,2更喜欢A. 算法流程: 每次男 ...
- uoj 41 【清华集训2014】矩阵变换 婚姻稳定问题
[清华集训2014]矩阵变换 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://uoj.ac/problem/41 Description 给出 ...
- AC日记——【清华集训2014】奇数国 uoj 38
#38. [清华集训2014]奇数国 思路: 题目中的number与product不想冲: 即为number与product互素: 所以,求phi(product)即可: 除一个数等同于在模的意义下乘 ...
- [UOJ#274][清华集训2016]温暖会指引我们前行
[UOJ#274][清华集训2016]温暖会指引我们前行 试题描述 寒冬又一次肆虐了北国大地 无情的北风穿透了人们御寒的衣物 可怜虫们在冬夜中发出无助的哀嚎 “冻死宝宝了!” 这时 远处的天边出现了一 ...
- UOJ #36「清华集训2014」玛里苟斯
这怎么想得到啊......... UOJ #36 题意:求随机一个集合的子集的异或和的$k$次方的期望值,保证答案$ \lt 2^{63},1 \leq k \leq 5$ $ Solution:$ ...
- UOJ#46. 【清华集训2014】玄学
传送门 分析 清华集训真的不是人做的啊嘤嘤嘤 我们可以考虑按操作时间把每个操作存进线段树里 如果现在点x正好使一个整块区间的右端点则更新代表这个区间的点 我们不难发现一个区间会因为不同的操作被分成若干 ...
- 清华集训2014 sum
清华集训2014sum 求\[∑_{i=1}^{n}(-1)^{⌊i√r⌋}\] 多组询问,\(n\leq 10^9,t\leq 10^4, r\leq 10^4\). 吼题解啊 具体已经讲得很详细了 ...
- UOJ #36 -【清华集训2014】玛里苟斯(线性基+暴搜)
UOJ 题面传送门 看到 \(k\) 次方的期望可以很自然地想到利用低次方和维护高次方和的套路进行处理,不过.由于这里的 \(k\) 达到 \(5\),直接这么处理一来繁琐,二来会爆 long lon ...
随机推荐
- 第201621123043 《Java程序设计》第12周学习总结
1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结多流与文件相关内容. 2. 面向系统综合设计-图书馆管理系统或购物车 使用流与文件改造你的图书馆管理系统或购物车. 2.1 简述如何 ...
- Packet for query is too large (84 > -1).
windows下的resin配置连接mysql,常用的安全的做法是将数据库信息配置到conf目录下的resin.xml文件中. 因为resin连接mysql不是必须的,所以resin本身没有提供mys ...
- bzoj千题计划271:bzoj4869: [六省联考2017]相逢是问候
http://www.lydsy.com/JudgeOnline/problem.php?id=4869 欧拉降幂+线段树,每个数最多降log次,模数就会降为1 #include<cmath&g ...
- JFinal项目发送邮件——jfinal-mail-plugin
JFianl框架: JFinal 是基于 Java 语言的极速 WEB + ORM 框架,其核心设计目标是开发迅速.代码量少.学习简单.功能强大.轻量级.易扩展.Restful.在拥有Java语言所有 ...
- .net 小程序获取用户UnionID
第一次写博客,写的不好多多海涵! 1.小程序获取UnionID的流程用code去换取session_key,然后去解密小程序获取到的那串字符! 话不多说,原理大家都懂!!!!!! 直接上代码 publ ...
- it's a big trick
今天,正式的登上了我注册已久的博客园,最初注册园子得出发点是记录生活点滴和学习工作的心得的,那就不忘初心,从头开始吧. 从校园到工作,从东北到南方 我们毕业啦 谁说毕业遥遥无期,转眼就要各奔东西. 是 ...
- 新概念英语(1-109)A Good Idea
Lesson 109 A good idea 好主意 Listen to the tape then answer this question. What does Jane have with he ...
- spark2.1注册内部函数spark.udf.register("xx", xxx _),运行时抛出异常:Task not serializable
函数代码: class MySparkJob{ def entry(spark:SparkSession):Unit={ def getInnerRsrp(outer_rsrp: Double, we ...
- Struts(二十一):类型转换与复杂属性、集合属性配合使用
背景: 本章节主要以复杂属性.集合属性类型转化为例,来学习这两种情况下怎么使用. 复杂对象属性转换场景: 1.新建struts_04 web.xml <?xml version="1. ...
- Struts(十):OGNL表达式(一)
Struts2 用s:porperty标签和OGNL表达式来读取值栈中的属性值: I.值栈中的属性值: 1.对象栈:读取对象栈中的某一个对象的属性值: 2.Map栈 :request,session, ...