题目大意:给n个数字,求子集的异或和的k次方的期望(n<=10^5,k<=5,保证答案小于2^63)

做法:首先如果从集合中拿出a和b,把a和a xor b放回集合,子集的异或和与原来是一一对应的,用高斯消元的思想可以消到只剩log个数,其他都是0,对答案没有影响。然后考虑k次方的期望,我们把二进制下每一位拆开,假设第i位的数字为xi,答案为(x1+x2+...+xlog)^k的期望,展开式子后发现是选k次x1~xlog中的数(可以重复选),每种选法选的位的乘积的期望的和,暴力枚举每种选法,复杂度为log^k(显然在k比较大时,由于答案范围限制,log不会太大,所以复杂度可以接受),一种选法只有选出的位都为1才对答案有贡献,列出方程然后高斯消元计算合法方案,每种方案的贡献必然是2的次幂并且幂数最小为-1,运算时直接记是多少次幂,算完再乘个2加入答案,最后判是否是奇数输出.5即可。

代码:

#include<cstdio>
#include<cstring>
#define ll unsigned long long
ll read()
{
ll x;char c;
while((c=getchar())<''||c>'');
for(x=c-'';(c=getchar())>=''&&c<='';)x=x*+c-'';
return x;
}
ll z[],ans;
int mx,k,a[],t[];
void dfs(int x)
{
if(x==k)
{
int i,j,x,s=;
memset(t,,sizeof(t));
for(i=;i<=mx;++i)if(z[i])
{
for(x=j=;j<k;++j)x|=int(bool(z[i]&(1ULL<<a[j])))<<j;
for(j=k;j--;)if(x&(<<j))t[j]?:(t[j]=x,--s),x^=t[j];
}
for(x=(<<k)-,i=k;i--;s+=a[i])if(x&(<<i))x^=t[i];
if(!x)ans+=1ULL<<s;
return;
}
for(int i=;i<=mx;++i)a[x]=i,dfs(x+);
}
int main()
{
int n,i;
n=read();k=read();
while(n--)
{
ll x=read();
for(i=;i--;)if(x&(1ULL<<i))z[i]?:z[i]=x,x^=z[i];
}
for(mx=;mx--;)if(z[mx])break;
dfs();
printf("%lld%s",ans>>,ans&?".5":"");
}

[UOJ]#36. 【清华集训2014】玛里苟斯的更多相关文章

  1. uoj #46[清华集训2014]玄学

    uoj 因为询问是关于一段连续区间内的操作的,所以对操作构建线段树,这里每个点维护若干个不交的区间,每个区间\((l,r,a,b)\)表示区间\([l,r]\)内的数要变成\(ax+b\) 每次把新操 ...

  2. UOJ.41.[清华集训2014]矩阵变换(稳定婚姻)

    题目链接 稳定婚姻问题:有n个男生n个女生,每个男/女生对每个女/男生有一个不同的喜爱程度.给每个人选择配偶. 若不存在 x,y未匹配,且x喜欢y胜过喜欢x当前的配偶,y喜欢x也胜过y当前的配偶 的完 ...

  3. bzoj 3816&&uoj #41. [清华集训2014]矩阵变换

    稳定婚姻问题: 有n个男生,n个女生,所有女生在每个男生眼里有个排名,反之一样. 将男生和女生两两配对,保证不会出现婚姻不稳定的问题. 即A-1,B-2 而A更喜欢2,2更喜欢A. 算法流程: 每次男 ...

  4. uoj 41 【清华集训2014】矩阵变换 婚姻稳定问题

    [清华集训2014]矩阵变换 Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://uoj.ac/problem/41 Description 给出 ...

  5. AC日记——【清华集训2014】奇数国 uoj 38

    #38. [清华集训2014]奇数国 思路: 题目中的number与product不想冲: 即为number与product互素: 所以,求phi(product)即可: 除一个数等同于在模的意义下乘 ...

  6. [UOJ#274][清华集训2016]温暖会指引我们前行

    [UOJ#274][清华集训2016]温暖会指引我们前行 试题描述 寒冬又一次肆虐了北国大地 无情的北风穿透了人们御寒的衣物 可怜虫们在冬夜中发出无助的哀嚎 “冻死宝宝了!” 这时 远处的天边出现了一 ...

  7. UOJ #36「清华集训2014」玛里苟斯

    这怎么想得到啊......... UOJ #36 题意:求随机一个集合的子集的异或和的$k$次方的期望值,保证答案$ \lt 2^{63},1 \leq k \leq 5$ $ Solution:$ ...

  8. UOJ#46. 【清华集训2014】玄学

    传送门 分析 清华集训真的不是人做的啊嘤嘤嘤 我们可以考虑按操作时间把每个操作存进线段树里 如果现在点x正好使一个整块区间的右端点则更新代表这个区间的点 我们不难发现一个区间会因为不同的操作被分成若干 ...

  9. 清华集训2014 sum

    清华集训2014sum 求\[∑_{i=1}^{n}(-1)^{⌊i√r⌋}\] 多组询问,\(n\leq 10^9,t\leq 10^4, r\leq 10^4\). 吼题解啊 具体已经讲得很详细了 ...

  10. UOJ #36 -【清华集训2014】玛里苟斯(线性基+暴搜)

    UOJ 题面传送门 看到 \(k\) 次方的期望可以很自然地想到利用低次方和维护高次方和的套路进行处理,不过.由于这里的 \(k\) 达到 \(5\),直接这么处理一来繁琐,二来会爆 long lon ...

随机推荐

  1. 第四次团队作业:社团申请App

    概要: 基于上次软件设计本着界面简洁.易于使用的初衷,进行功能的实现,代码位置:https://github.com/LinZezhong/testDemo 第一部分:软件的使用 注册: 登录: 主界 ...

  2. 1013团队Beta冲刺day6

    项目进展 李明皇 今天解决的进度 进行前后端联动调试 明天安排 完善程序运行逻辑 林翔 今天解决的进度 服务器端发布消息,删除消息,检索消息,个人发布的action 明天安排 图片功能遇到问题,微信小 ...

  3. 【iOS】swift-如何理解 if let 与guard?

    著作权归作者所有. 商业转载请联系作者获得授权,非商业转载请注明出处. 作者:黄兢成 链接:http://www.zhihu.com/question/36448325/answer/68614858 ...

  4. ruby:TypeError: 对象不支持此属性或方法

    解决办法. 1.下载对应版本 下载node.js,根据ruby版本决定下载32还是x64,我的ruby版本x64 https://npm.taobao.org/mirrors/node/v8.9.3/ ...

  5. 老板怎么办,我们网站遭到DDoS攻击又挂了?

    相信现在正在阅读此文的你,一定听说过发生在上个月的史上最大的DDoS攻击. 美国东部时间2月28日,GitHub在一瞬间遭到高达1.35Tbps的带宽攻击.这次DDoS攻击几乎可以堪称是互联网有史以来 ...

  6. 山西某公司NetApp存储不小心删除文件数据恢复成功案例

    故障情况简介: 需要进行数据恢复的设备是一台NetApp存储,共有24块磁盘组成.由于管理员删除文件夹,且时间比较久,删除有几个月时间. 可恢复性判断:由于NetApp中的文件系统的特性,WAFL是& ...

  7. vue初尝试--组件

    github代码同步网址 组件 (Component) 是 Vue.js 最强大的功能之一.组件可以扩展 HTML 元素,封装可重用的代码.在较高层面上,组件是自定义元素,Vue.js 的编译器为它添 ...

  8. Python之旅.第三章.函数3.29

    一.无参装饰器 1 开放封闭原则 软件一旦上线后,就应该遵循开放封闭原则,即对修改源代码是封闭的,对功能的扩展是开放的 也就是说我们必须找到一种解决方案: 能够在不修改一个功能源代码以及调用方式的前提 ...

  9. C 函数指针与回调函数

    函数指针是指向函数的指针变量. 通常我们说的指针变量是指向一个整型.字符型或数组等变量,而函数指针是指向函数. 函数指针可以像一般函数一样,用于调用函数.传递参数. 函数指针变量的声明: #inclu ...

  10. Python大婶博客汇总

    Python大神金星 博客:http://www.cnblogs.com/jin-xin/articles/7459977.html