题目大意:给n个数字,求子集的异或和的k次方的期望(n<=10^5,k<=5,保证答案小于2^63)

做法:首先如果从集合中拿出a和b,把a和a xor b放回集合,子集的异或和与原来是一一对应的,用高斯消元的思想可以消到只剩log个数,其他都是0,对答案没有影响。然后考虑k次方的期望,我们把二进制下每一位拆开,假设第i位的数字为xi,答案为(x1+x2+...+xlog)^k的期望,展开式子后发现是选k次x1~xlog中的数(可以重复选),每种选法选的位的乘积的期望的和,暴力枚举每种选法,复杂度为log^k(显然在k比较大时,由于答案范围限制,log不会太大,所以复杂度可以接受),一种选法只有选出的位都为1才对答案有贡献,列出方程然后高斯消元计算合法方案,每种方案的贡献必然是2的次幂并且幂数最小为-1,运算时直接记是多少次幂,算完再乘个2加入答案,最后判是否是奇数输出.5即可。

代码:

#include<cstdio>
#include<cstring>
#define ll unsigned long long
ll read()
{
ll x;char c;
while((c=getchar())<''||c>'');
for(x=c-'';(c=getchar())>=''&&c<='';)x=x*+c-'';
return x;
}
ll z[],ans;
int mx,k,a[],t[];
void dfs(int x)
{
if(x==k)
{
int i,j,x,s=;
memset(t,,sizeof(t));
for(i=;i<=mx;++i)if(z[i])
{
for(x=j=;j<k;++j)x|=int(bool(z[i]&(1ULL<<a[j])))<<j;
for(j=k;j--;)if(x&(<<j))t[j]?:(t[j]=x,--s),x^=t[j];
}
for(x=(<<k)-,i=k;i--;s+=a[i])if(x&(<<i))x^=t[i];
if(!x)ans+=1ULL<<s;
return;
}
for(int i=;i<=mx;++i)a[x]=i,dfs(x+);
}
int main()
{
int n,i;
n=read();k=read();
while(n--)
{
ll x=read();
for(i=;i--;)if(x&(1ULL<<i))z[i]?:z[i]=x,x^=z[i];
}
for(mx=;mx--;)if(z[mx])break;
dfs();
printf("%lld%s",ans>>,ans&?".5":"");
}

[UOJ]#36. 【清华集训2014】玛里苟斯的更多相关文章

  1. uoj #46[清华集训2014]玄学

    uoj 因为询问是关于一段连续区间内的操作的,所以对操作构建线段树,这里每个点维护若干个不交的区间,每个区间\((l,r,a,b)\)表示区间\([l,r]\)内的数要变成\(ax+b\) 每次把新操 ...

  2. UOJ.41.[清华集训2014]矩阵变换(稳定婚姻)

    题目链接 稳定婚姻问题:有n个男生n个女生,每个男/女生对每个女/男生有一个不同的喜爱程度.给每个人选择配偶. 若不存在 x,y未匹配,且x喜欢y胜过喜欢x当前的配偶,y喜欢x也胜过y当前的配偶 的完 ...

  3. bzoj 3816&&uoj #41. [清华集训2014]矩阵变换

    稳定婚姻问题: 有n个男生,n个女生,所有女生在每个男生眼里有个排名,反之一样. 将男生和女生两两配对,保证不会出现婚姻不稳定的问题. 即A-1,B-2 而A更喜欢2,2更喜欢A. 算法流程: 每次男 ...

  4. uoj 41 【清华集训2014】矩阵变换 婚姻稳定问题

    [清华集训2014]矩阵变换 Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://uoj.ac/problem/41 Description 给出 ...

  5. AC日记——【清华集训2014】奇数国 uoj 38

    #38. [清华集训2014]奇数国 思路: 题目中的number与product不想冲: 即为number与product互素: 所以,求phi(product)即可: 除一个数等同于在模的意义下乘 ...

  6. [UOJ#274][清华集训2016]温暖会指引我们前行

    [UOJ#274][清华集训2016]温暖会指引我们前行 试题描述 寒冬又一次肆虐了北国大地 无情的北风穿透了人们御寒的衣物 可怜虫们在冬夜中发出无助的哀嚎 “冻死宝宝了!” 这时 远处的天边出现了一 ...

  7. UOJ #36「清华集训2014」玛里苟斯

    这怎么想得到啊......... UOJ #36 题意:求随机一个集合的子集的异或和的$k$次方的期望值,保证答案$ \lt 2^{63},1 \leq k \leq 5$ $ Solution:$ ...

  8. UOJ#46. 【清华集训2014】玄学

    传送门 分析 清华集训真的不是人做的啊嘤嘤嘤 我们可以考虑按操作时间把每个操作存进线段树里 如果现在点x正好使一个整块区间的右端点则更新代表这个区间的点 我们不难发现一个区间会因为不同的操作被分成若干 ...

  9. 清华集训2014 sum

    清华集训2014sum 求\[∑_{i=1}^{n}(-1)^{⌊i√r⌋}\] 多组询问,\(n\leq 10^9,t\leq 10^4, r\leq 10^4\). 吼题解啊 具体已经讲得很详细了 ...

  10. UOJ #36 -【清华集训2014】玛里苟斯(线性基+暴搜)

    UOJ 题面传送门 看到 \(k\) 次方的期望可以很自然地想到利用低次方和维护高次方和的套路进行处理,不过.由于这里的 \(k\) 达到 \(5\),直接这么处理一来繁琐,二来会爆 long lon ...

随机推荐

  1. Microsoft dynamic sdk中join应该注意的问题.

    QueryExpression queryNextSeq = new QueryExpression { EntityName = "ep_prodoperationsequence&quo ...

  2. python端口扫描用多线程+线程安全的队列+Thread类实现

    用线程安全的队列Queue实现扫描端口数据存储 用多线程扫描端口 用Thread类实现程序组织 #coding:utf-8 import sys import socket import sys im ...

  3. 第三章 jQuery中的事件与动画

    第三章jQuery中的事件与动画 一. jQuery中的事件 jQuery事件是对javaScript事件的封装. 1.基础事件 在javaScript中,常用的基础事件有鼠标事件.键盘事件.wind ...

  4. PHP模式设计之单例模式、工厂模式、注册树模式、适配器模式、观察者模式

    php模式设计之单例模式 什么是单例模式? 单例模式是指在整个应用中只有一个实例对象的设计模式 为什么要用单例模式? php经常要链接数据库,如果在一个项目中频繁建立连接数据库,会造成服务器资源的很大 ...

  5. 移动端300ms与点透总结

    300ms,主要发生在mobile 为啥会出现300ms延迟现象 浏览器想知道用户是否dobule tap(双击缩放) 下列情况不会出现300ms延迟 桌面浏览器 meta的viewport设置了us ...

  6. Python内置函数(21)——tuple

    英文文档: The constructor builds a tuple whose items are the same and in the same order as iterable's it ...

  7. Spring Security 入门(1-6-1)Spring Security - 配置文件解析和访问请求处理

    1.在pom.xml中添加maven坐标 <dependency> <groupId>org.springframework.security</groupId> ...

  8. tensorflow让程序学习到函数y = ax + b中a和b的值

    今天我们通过tensorflow来实现一个简单的小例子: 假如我定义一个一元一次函数y = 0.1x + 0.3,然后我在程序中定义两个变量 Weight 和 biases 怎么让我的这两个变量自己学 ...

  9. [LuoguP1113] 杂物 - 拓扑排序

    其实只是纪念下第一篇洛谷题解? Description John的农场在给奶牛挤奶前有很多杂务要完成,每一项杂务都需要一定的时间来完成它.比如:他们要将奶牛集合起来,将他们赶进牛棚,为奶牛清洗乳房以及 ...

  10. java字符串类型常量拼接与变量拼接的区别

    前言 首先看下下面代码结果是什么? package cn.demo_01; public class StringDemo02 { public static void main(String[] a ...