[UOJ]#36. 【清华集训2014】玛里苟斯
题目大意:给n个数字,求子集的异或和的k次方的期望(n<=10^5,k<=5,保证答案小于2^63)
做法:首先如果从集合中拿出a和b,把a和a xor b放回集合,子集的异或和与原来是一一对应的,用高斯消元的思想可以消到只剩log个数,其他都是0,对答案没有影响。然后考虑k次方的期望,我们把二进制下每一位拆开,假设第i位的数字为xi,答案为(x1+x2+...+xlog)^k的期望,展开式子后发现是选k次x1~xlog中的数(可以重复选),每种选法选的位的乘积的期望的和,暴力枚举每种选法,复杂度为log^k(显然在k比较大时,由于答案范围限制,log不会太大,所以复杂度可以接受),一种选法只有选出的位都为1才对答案有贡献,列出方程然后高斯消元计算合法方案,每种方案的贡献必然是2的次幂并且幂数最小为-1,运算时直接记是多少次幂,算完再乘个2加入答案,最后判是否是奇数输出.5即可。
代码:
#include<cstdio>
#include<cstring>
#define ll unsigned long long
ll read()
{
ll x;char c;
while((c=getchar())<''||c>'');
for(x=c-'';(c=getchar())>=''&&c<='';)x=x*+c-'';
return x;
}
ll z[],ans;
int mx,k,a[],t[];
void dfs(int x)
{
if(x==k)
{
int i,j,x,s=;
memset(t,,sizeof(t));
for(i=;i<=mx;++i)if(z[i])
{
for(x=j=;j<k;++j)x|=int(bool(z[i]&(1ULL<<a[j])))<<j;
for(j=k;j--;)if(x&(<<j))t[j]?:(t[j]=x,--s),x^=t[j];
}
for(x=(<<k)-,i=k;i--;s+=a[i])if(x&(<<i))x^=t[i];
if(!x)ans+=1ULL<<s;
return;
}
for(int i=;i<=mx;++i)a[x]=i,dfs(x+);
}
int main()
{
int n,i;
n=read();k=read();
while(n--)
{
ll x=read();
for(i=;i--;)if(x&(1ULL<<i))z[i]?:z[i]=x,x^=z[i];
}
for(mx=;mx--;)if(z[mx])break;
dfs();
printf("%lld%s",ans>>,ans&?".5":"");
}
[UOJ]#36. 【清华集训2014】玛里苟斯的更多相关文章
- uoj #46[清华集训2014]玄学
uoj 因为询问是关于一段连续区间内的操作的,所以对操作构建线段树,这里每个点维护若干个不交的区间,每个区间\((l,r,a,b)\)表示区间\([l,r]\)内的数要变成\(ax+b\) 每次把新操 ...
- UOJ.41.[清华集训2014]矩阵变换(稳定婚姻)
题目链接 稳定婚姻问题:有n个男生n个女生,每个男/女生对每个女/男生有一个不同的喜爱程度.给每个人选择配偶. 若不存在 x,y未匹配,且x喜欢y胜过喜欢x当前的配偶,y喜欢x也胜过y当前的配偶 的完 ...
- bzoj 3816&&uoj #41. [清华集训2014]矩阵变换
稳定婚姻问题: 有n个男生,n个女生,所有女生在每个男生眼里有个排名,反之一样. 将男生和女生两两配对,保证不会出现婚姻不稳定的问题. 即A-1,B-2 而A更喜欢2,2更喜欢A. 算法流程: 每次男 ...
- uoj 41 【清华集训2014】矩阵变换 婚姻稳定问题
[清华集训2014]矩阵变换 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://uoj.ac/problem/41 Description 给出 ...
- AC日记——【清华集训2014】奇数国 uoj 38
#38. [清华集训2014]奇数国 思路: 题目中的number与product不想冲: 即为number与product互素: 所以,求phi(product)即可: 除一个数等同于在模的意义下乘 ...
- [UOJ#274][清华集训2016]温暖会指引我们前行
[UOJ#274][清华集训2016]温暖会指引我们前行 试题描述 寒冬又一次肆虐了北国大地 无情的北风穿透了人们御寒的衣物 可怜虫们在冬夜中发出无助的哀嚎 “冻死宝宝了!” 这时 远处的天边出现了一 ...
- UOJ #36「清华集训2014」玛里苟斯
这怎么想得到啊......... UOJ #36 题意:求随机一个集合的子集的异或和的$k$次方的期望值,保证答案$ \lt 2^{63},1 \leq k \leq 5$ $ Solution:$ ...
- UOJ#46. 【清华集训2014】玄学
传送门 分析 清华集训真的不是人做的啊嘤嘤嘤 我们可以考虑按操作时间把每个操作存进线段树里 如果现在点x正好使一个整块区间的右端点则更新代表这个区间的点 我们不难发现一个区间会因为不同的操作被分成若干 ...
- 清华集训2014 sum
清华集训2014sum 求\[∑_{i=1}^{n}(-1)^{⌊i√r⌋}\] 多组询问,\(n\leq 10^9,t\leq 10^4, r\leq 10^4\). 吼题解啊 具体已经讲得很详细了 ...
- UOJ #36 -【清华集训2014】玛里苟斯(线性基+暴搜)
UOJ 题面传送门 看到 \(k\) 次方的期望可以很自然地想到利用低次方和维护高次方和的套路进行处理,不过.由于这里的 \(k\) 达到 \(5\),直接这么处理一来繁琐,二来会爆 long lon ...
随机推荐
- django获取ip与数据重复性判定
获取ip if request.META.has_key('HTTP_X_FORWARDED_FOR'): ip_c = request.META['HTTP_X_FORWARDED_FOR'] el ...
- JAVA委托事件处理机制
1)事件:用户对程序的某一种功能性操作. Java中的事件主要有两种: 1.组件类事件 componentEvent.ContainerEvent.WindowEvent.FocusEvent.Pai ...
- Android属性动画 nineoldandroids
各种资源链接 nineoldandroids 任玉刚的五个图片滑动,点击menu http://blog.csdn.net/singwhatiwanna/article/details/1763998 ...
- nyoj 苹果
苹果 时间限制:3000 ms | 内存限制:65535 KB 难度:3 描述 ctest有n个苹果,要将它放入容量为v的背包.给出第i个苹果的大小和价钱,求出能放入背包的苹果的总价钱最大值. ...
- vue 手机端开发 小商铺 添加购物车 以及结算 功能
这个功能绕了我一天!!! 对 就是这个功能 一系列相关联的 四处相关联 现在加班 没时间更 过两天在更
- 爬虫小探-Python3 urllib.request获取页面数据
使用Python3 urllib.request中的Requests()和urlopen()方法获取页面源码,并用re正则进行正则匹配查找需要的数据. #forex.py#coding:utf-8 ' ...
- MySQL Group Relication 部署环境入门篇
一:环境介绍 cenos 6.7 版本 数据库的版本5.7.19 二:部署规划单机多实例的部署 端口号 数据目录 group_repplicatoon 通信接口 3307 /data ...
- GIT入门笔记(6)- 向版本库添加文本文件
1.把文本文件添加到版本库? 所有的版本控制系统,其实只能跟踪文本文件的改动,比如TXT文件,网页,所有的程序代码等等,Git也不例外. 版本控制系统可以告诉你每次的改动,比如在第5行加了一个单词&q ...
- Angular UI框架 Ng-alain @delon的脚手架的生成开发模板
前言 首先感谢下 cipchk基于 Ng-Zorror 框架上制作的ng-alain . 之前很早就关注了 ng-alain,今天得空折腾了下. 折腾的时候发现官方文档有些坑,没有写清楚,所以我作为一 ...
- C++中友元
一.友元分为两种 1.友元函数 2.友元类 二.解析比较好的博客:http://www.cnblogs.com/BeyondAnyTime/archive/2012/06/04/2535305.htm ...