poj 2065 高斯消元(取模的方程组)
| Time Limit: 1000MS | Memory Limit: 30000K | |
| Total Submissions: 1735 | Accepted: 1085 |
Description
Recently, it was discovered that if each message is assumed to be transmitted as a sequence of integers a0, a1, ...an-1 the function f (k) = ∑0<=i<=n-1aiki (mod p) always evaluates to values 0 <= f (k) <= 26 for 1
<= k <= n, provided that the correct value of p is used. n is of course the length of the transmitted message, and the ai denote integers such that 0 <= ai < p. p is a prime number that is guaranteed to be larger than n as well as larger than 26.
It is, however, known to never exceed 30 000.
These relationships altogether have been considered too peculiar for being pure coincidences, which calls for further investigation.
The linguists at the faculty of Langues et Cultures Extraterrestres transcribe these messages to strings in the English alphabet to make the messages easier to handle while trying to interpret their meanings. The transcription procedure simply assigns the letters
a..z to the values 1..26 that f (k) might evaluate to, such that 1 = a, 2 = b etc. The value 0 is transcribed to '*' (an asterisk). While transcribing messages, the linguists simply loop from k = 1 to n, and append the character corresponding to the value
of f (k) at the end of the string.
The backward transcription procedure, has however, turned out to be too complex for the linguists to handle by themselves. You are therefore assigned the task of writing a program that converts a set of strings to their corresponding Extra Terrestial number
sequences.
Input
The only allowed characters in the string are the lower case letters 'a'..'z' and '*' (asterisk). No string will be longer than 70 characters.
Output
Sample Input
3
31 aaa
37 abc
29 hello*earth
Sample Output
1 0 0
0 1 0
8 13 9 13 4 27 18 10 12 24 15
题意:
表示最开始并没有看懂题目是什么意思,那一串字母代表f[i]的值
f(k) = ∑0<=i<=n-1aiki (mod p)转换成方程组便是,
a0*1^0 + a1*1^1+a2*1^2+........+an-1*1^(n-1) = f(1)
a0*2^0 + a1*2^1+a2*2^2+........+an-1*2^(n-1) = f(2)
......
a0*n^0 + a1*n^1+a2*n^2+........+an-1*n^(n-1) = f(n)
/*
poj 2065
解对mod取模的方程组
*/
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
typedef long double ld; using namespace std;
const int maxn = 105; int equ,var;
int a[maxn][maxn];
int b[maxn][maxn];
int x[maxn];
int free_x[maxn];
int free_num;
int n;
void debug()
{
for(int i = 0; i < n; i++)
{
for(int j = 0; j <= n; j++)
printf("%d ",a[i][j]);
printf("\n");
}
} int gcd(int a,int b)
{
while(b)
{
int tmp = b;
b = a%b;
a = tmp;
}
return a;
} int lcm(int a,int b)
{
return a/gcd(a,b)*b;
} int Gauss(int mod)
{
int max_r,col,k;
free_num = 0;
for(k = 0,col = 0; k < equ && col < var; k++,col++)
{
max_r = k;
for(int i = k+1; i < equ; i++)
{
if(abs(a[i][col]) > abs(a[max_r][col]))
max_r = i;
}
if(a[max_r][col] == 0)
{
k --;
free_x[free_num++] = col;
continue;
}
if(max_r != k)
{
for(int j = col; j < var+1; j++)
swap(a[k][j],a[max_r][j]); }
for(int i = k + 1; i < equ; i++)
{
if(a[i][col] != 0)
{
int LCM = lcm(abs(a[i][col]),abs(a[k][col]));
int ta = LCM / abs(a[i][col]);
int tb = LCM / abs(a[k][col]);
if(a[i][col] * a[k][col] < 0) tb = -tb;
for(int j = col; j < var+1; j++)
{
a[i][j] = ((a[i][j]*ta - a[k][j]*tb)%mod+mod)%mod;
}
}
} }
for(int i = k; i < equ; i++)
if(a[i][col] != 0)
return -1;
if(k < var) return var-k; for(int i = var-1; i >= 0; i--)
{
ll temp = a[i][var];
for(int j = i +1; j < var; j++)
temp =((temp- a[i][j]*x[j])%mod+mod)%mod;
while(temp % a[i][i]) temp += mod;
temp /= a[i][i];
temp %= mod; x[i] = temp;
}
return 0; } void ini()
{
memset(a,0,sizeof(a));
memset(x,0,sizeof(x));
equ = n;
var = n;
} char str[105];
int main()
{
int T,p;
scanf("%d",&T);
while(T--)
{
scanf("%d",&p);
scanf("%s",str);
n = strlen(str);
ini();
for(int i=0; i<n; i++)
{
if(str[i]=='*')
a[i][n]=0;
else
a[i][n]=str[i]-'a'+1;
a[i][0]=1;
for(int j=1; j<n; j++)
a[i][j]=(a[i][j-1]*(i+1))%p;
} //debug();
Gauss(p); for(int i = 0; i < n-1; i++)
printf("%d ",x[i]);
printf("%d\n",x[n-1]);
}
return 0;
}
poj 2065 高斯消元(取模的方程组)的更多相关文章
- POJ 2065 高斯消元求解问题
题目大意: f[k] = ∑a[i]*k^i % p 每一个f[k]的值就是字符串上第 k 个元素映射的值,*代表f[k] = 0 , 字母代表f[k] = str[i]-'a'+1 把每一个k^i求 ...
- 2017湘潭赛 A题 Determinant (高斯消元取模)
链接 http://202.197.224.59/OnlineJudge2/index.php/Problem/read/id/1260 今年湘潭的A题 题意不难 大意是把n*(n+1)矩阵去掉某一列 ...
- POJ 2065 SETI (高斯消元 取模)
题目链接 题意: 输入一个素数p和一个字符串s(只包含小写字母和‘*’),字符串中每个字符对应一个数字,'*'对应0,‘a’对应1,‘b’对应2.... 例如str[] = "abc&quo ...
- 【poj1830-开关问题】高斯消元求解异或方程组
第一道高斯消元题目~ 题目:有N个相同的开关,每个开关都与某些开关有着联系,每当你打开或者关闭某个开关的时候,其他的与此开关相关联的开关也会相应地发生变化,即这些相联系的开关的状态如果原来为开就变为关 ...
- bzoj千题计划187:bzoj1770: [Usaco2009 Nov]lights 燈 (高斯消元解异或方程组+枚举自由元)
http://www.lydsy.com/JudgeOnline/problem.php?id=1770 a[i][j] 表示i对j有影响 高斯消元解异或方程组 然后dfs枚举自由元确定最优解 #in ...
- 【BZOJ】2466: [中山市选2009]树 高斯消元解异或方程组
[题意]给定一棵树的灯,按一次x改变与x距离<=1的点的状态,求全0到全1的最少次数.n<=100. [算法]高斯消元解异或方程组 [题解]设f[i]=0/1表示是否按第i个点的按钮,根据 ...
- POJ SETI 高斯消元 + 费马小定理
http://poj.org/problem?id=2065 题目是要求 如果str[i] = '*'那就是等于0 求这n条方程在%p下的解. 我看了网上的题解说是高斯消元 + 扩展欧几里德. 然后我 ...
- POJ 1222 POJ 1830 POJ 1681 POJ 1753 POJ 3185 高斯消元求解一类开关问题
http://poj.org/problem?id=1222 http://poj.org/problem?id=1830 http://poj.org/problem?id=1681 http:// ...
- POJ 1222 EXTENDED LIGHTS OUT(高斯消元解异或方程组)
EXTENDED LIGHTS OUT Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 10835 Accepted: 6 ...
随机推荐
- 项目Beta冲刺Day7
项目进展 李明皇 今天解决的进度 部分数据传递和使用逻辑测试 林翔 今天解决的进度 服务器端查看个人发布的action,修改已发布消息状态的action,仍在尝试使用第三方云存储功能保存图片 孙敏铭 ...
- Mybatis-select-返回值类型错误理解
Mybatis :Cause: java.lang.UnsupportedOperationException异常: 今天在写一个练手项目,作为初学Mybatis的小白,想着这里findByEmp_i ...
- Linux - IDA - 安装 ( 带F5功能 )
Linux - IDA - 安装 ( 带F5功能 ) 0x00 前言 最近在熟悉deepin系统,想着把逆向的一些软件也迁移过去,但像ida,Ollydbg这些工具一般都是在windows下使用,所以 ...
- Linux--慕课学习
刚开始接触Linux,很有幸的在慕课网上看到了Peter老师的Linux入门课程,老师讲课真的式行云流水,深入浅出,循循善诱,层层递进. 老师分享的都是自己多年来总结的经验.看完之后也学到了很多东西. ...
- ssh整合之七注解结合xml形式
1.我们之前的纯xml的方式,我们的配置文件很多,我们可以使用注解结合xml的方式进行开发,这样的话,我们的配置文件,会少很多,同时,我们可以直接在类中看到配置,这样,我们就可以快速地搭建一个ssh整 ...
- CSS中容易混淆的伪元素类型和用法
:first-of-type 匹配属于其父元素的第一个特定类型的子元素. 1.例子 <head> <meta charset="UTF-8"> <ti ...
- Python之协程
前言 在操作系统中进程是资源分配的最小单位,线程是CPU调度的最小单位.按道理来说我们已经算是把cpu的利用率提高很多了.但是我们知道无论是创建多进程还是创建多线程来解决问题,都要消耗一定的时间来创建 ...
- Spring(三):Spring整合Hibernate
背景: 本文主要介绍使用spring-framework-4.3.8.RELEASE与hibernate-release-5.2.9.Final项目整合搭建的过程. 开发环境简介: 1).jdk 1. ...
- 字符串分割方法split()函数
>>> data = '1000,小甲鱼,男'>>> data.split(',')['1000', '小甲鱼', '男'] str.split('以什么为标志进行 ...
- spring clound微服务架构实践(1)——搭建服务注册中心
一.创建一个空maven parent模板 1-1.新建project,选择maven 1-2.给此模板起名 1-3.此模板的保存位置,此处放入我的git项目spring-clound-learnin ...