●BZOJ 3561 DZY Loves Math VI
题链:
http://www.lydsy.com/JudgeOnline/problem.php?id=3561
题解:
莫比乌斯反演
$$\begin{aligned}
ANS&=\sum_{i=1}^{n}\sum_{j=1}^{m}lcm(i,j)^{gcd(i,j)}\\
&=\sum_{g=1}^{min(n,m)}\sum_{i=1}^{\frac{n}{g}}\sum_{j=1}^{\frac{m}{g}}g^gi^gj^g[gcd(i,j)==1]\\
&=\sum_{g=1}^{min(n,m)}g^g\sum_{i=1}^{\frac{n}{g}}\sum_{j=1}^{\frac{m}{g}}i^gj^g\sum_{d|gcd(i,j)}\mu(d)\\
&=\sum_{g=1}^{min(n,m)}g^g\sum_{d=1}^{min(\frac{n}{g},\frac{m}{g})}\mu(d) \sum_{i=1}^{\frac{n}{gd}}(id)^g\sum_{j=1}^{\frac{m}{gd}}(jd)^g\\
&=\sum_{g=1}^{min(n,m)}g^g\sum_{d=1}^{min(\frac{n}{g},\frac{m}{g})}\mu(d)\times d^{2g} \sum_{i=1}^{\frac{n}{gd}}i^g\sum_{j=1}^{\frac{m}{gd}}j^g\\
\end{aligned}$$
上面这个式子直接$O(NlogN)$计算就好了。
代码:
#include<bits/stdc++.h>
#define MAXN 500050
using namespace std;
const int mod=1000000007;
int mu[MAXN],mi[MAXN],smi[MAXN];
int Pow(int a,int b){
int ret=1;
while(b){
if(b&1) ret=1ll*ret*a%mod;
b>>=1; a=1ll*a*a%mod;
}
return ret;
}
void Sieve(){
static bool np[MAXN];
static int prime[MAXN],pnt;
mu[1]=1;
for(int i=2;i<=500000;i++){
if(!np[i]) prime[++pnt]=i,mu[i]=-1;
for(int j=1;j<=pnt&&i<=500000/prime[j];j++){
np[i*prime[j]]=1;
if(i%prime[j]) mu[i*prime[j]]=-mu[i];
else break;
}
}
}
int main(){
Sieve();
int n,m,ans=0; scanf("%d%d",&n,&m);
if(n>m) swap(n,m);
for(int i=1;i<=500000;i++) mi[i]=1;
for(int g=1,gg;g<=n;g++){
gg=Pow(g,g);
for(int i=1;i<=m/g;i++)
mi[i]=1ll*mi[i]*i%mod,smi[i]=(1ll*smi[i-1]+mi[i])%mod;
for(int d=1;d<=n/g;d++)
ans=(1ll*ans+1ll*mu[d]*mi[d]%mod*mi[d]%mod*smi[n/(g*d)]%mod*smi[m/(g*d)]%mod*gg%mod)%mod;
}
printf("%d",ans);
return 0;
}
●BZOJ 3561 DZY Loves Math VI的更多相关文章
- BZOJ 3561 DZY Loves Math VI
BZOJ 3561 DZY Loves Math VI 求\(\sum_{i=1}^{n}\sum_{j=1}^{m}\text{lcm}(i,j)^{\gcd(i,j)}\),钦定\(n\leq m ...
- BZOJ 3561: DZY Loves Math VI 莫比乌斯反演+复杂度分析
推到了一个推不下去的形式,然后就不会了 ~ 看题解后傻了:我推的是对的,推不下去是因为不需要再推了. 复杂度看似很大,但其实是均摊 $O(n)$ 的,看来分析复杂度也是一个能力啊 ~ code: #i ...
- 【BZOJ 3561】 3561: DZY Loves Math VI (莫比乌斯,均摊log)
3561: DZY Loves Math VI Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 205 Solved: 141 Description ...
- 【BZOJ】3561: DZY Loves Math VI
题意 求\(\sum_{i=1}^{n} \sum_{j=1}^{m} lcm(i, j)^{gcd(i, j)}\)(\(n, m<=500000\)) 分析 很显然要死推莫比乌斯 题解 设\ ...
- 【BZOJ3561】DZY Loves Math VI (数论)
[BZOJ3561]DZY Loves Math VI (数论) 题面 BZOJ 题解 \[\begin{aligned} ans&=\sum_{i=1}^n\sum_{j=1}^m\sum_ ...
- ●BZOJ 3309 DZY Loves Math
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3309 题解: 莫比乌斯反演,线筛 化一化式子: f(x)表示x的质因子分解中的最大幂指数 $ ...
- [BZOJ3561] DZY Loves Math VI
(14.10.28改) 本来只想写BZOJ3739:DZY Loves Math VIII的,不过因为和VI有关系,而且也没别人写过VI的题解,那么写下. 不过我还不会插公式…… http://www ...
- BZOJ 3309: DZY Loves Math
3309: DZY Loves Math Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 761 Solved: 401[Submit][Status ...
- BZOJ 3512: DZY Loves Math IV [杜教筛]
3512: DZY Loves Math IV 题意:求\(\sum_{i=1}^n \sum_{j=1}^m \varphi(ij)\),\(n \le 10^5, m \le 10^9\) n较小 ...
随机推荐
- Beta预备会议
1. 讨论组长是否重选的议题和结论. 我们小组决定组长更换为林洋洋同学,他Web开发经验比较丰富,对任务的分配会更加明确,由于上一阶段中存在进度偏慢的问题,我们希望在Beta阶段通过更好的分工安排来保 ...
- Linux环境下发布.net core
一.安装Linux环境 1. 安装VM虚拟机和操作系统 VM虚拟工具安装的过程详见:http://blog.csdn.net/stpeace/article/details/78598333.直接按照 ...
- c# gridview 新增行
string[] newRow = {"long","d","b"}; Gridview.Rows.Insert(Gridview.Rows ...
- php_类的定义
此文章为原创见解,例子各方面也是东拼西凑.如果有错请留言.谢谢 在面向对象的思维中提出了两个概念,类和对象. 类是对某一类实物的抽象描述,而对象用于表示现实中该类事物的个体, 例子:老虎是父类,东北虎 ...
- linux下面的打包压缩命令
tar命令 tar [-cxtzjvfpPN] 文件与目录 ....linux下面压缩之前要把一堆文件打个包再压缩,即使只有一个文件也需要打个包.例子:tar czvf 1.tar.gz hello. ...
- jquery ajax file upload NET MVC 无刷新文件上传
网上有各种各样的文件上传方法,有基于JS框架的.也有基于flash swf插件的. 这次分享一个比较简单而且实用能快速上手的文件上传方法,主要步骤: 1.引用Jquery包,我用的是jquery-1. ...
- Python内置函数(52)——getattr
英文文档: getattr(object, name[, default]) Return the value of the named attribute of object. name must ...
- 【笔记】HybridApp中使用Promise化的JS-Bridge
背景: HybridApp,前端采用JS-bridge的方式调用Native的接口,如获取设备信息.拍照.人脸识别等 前端封装了调用库,每次调用Native接口,需要进行两步操作(1.在window下 ...
- javascript学习(2)修改html元素和提示对话框
一.修改html元素 1.修改p元素 1.1.源代码 1.2.执行前 1.3.执行后 2.修改div元素的className 2.1.源代码 1.2.执行前 1.3.执行后 3.直接在当前位置输出内容 ...
- JSON(二)——JavaScript中js对象与JSON格式字符串的相互转换
首先我们来看一下js中JSON格式的字符串 var JSONStr1 = "{\"name\" : \"张三\"}"; 注意以下的写法不是j ...