题链:

http://www.lydsy.com/JudgeOnline/problem.php?id=3561

题解:

莫比乌斯反演

$$\begin{aligned}
ANS&=\sum_{i=1}^{n}\sum_{j=1}^{m}lcm(i,j)^{gcd(i,j)}\\
&=\sum_{g=1}^{min(n,m)}\sum_{i=1}^{\frac{n}{g}}\sum_{j=1}^{\frac{m}{g}}g^gi^gj^g[gcd(i,j)==1]\\
&=\sum_{g=1}^{min(n,m)}g^g\sum_{i=1}^{\frac{n}{g}}\sum_{j=1}^{\frac{m}{g}}i^gj^g\sum_{d|gcd(i,j)}\mu(d)\\
&=\sum_{g=1}^{min(n,m)}g^g\sum_{d=1}^{min(\frac{n}{g},\frac{m}{g})}\mu(d) \sum_{i=1}^{\frac{n}{gd}}(id)^g\sum_{j=1}^{\frac{m}{gd}}(jd)^g\\
&=\sum_{g=1}^{min(n,m)}g^g\sum_{d=1}^{min(\frac{n}{g},\frac{m}{g})}\mu(d)\times d^{2g} \sum_{i=1}^{\frac{n}{gd}}i^g\sum_{j=1}^{\frac{m}{gd}}j^g\\
\end{aligned}$$

上面这个式子直接$O(NlogN)$计算就好了。

代码:

#include<bits/stdc++.h>
#define MAXN 500050
using namespace std;
const int mod=1000000007;
int mu[MAXN],mi[MAXN],smi[MAXN];
int Pow(int a,int b){
int ret=1;
while(b){
if(b&1) ret=1ll*ret*a%mod;
b>>=1; a=1ll*a*a%mod;
}
return ret;
}
void Sieve(){
static bool np[MAXN];
static int prime[MAXN],pnt;
mu[1]=1;
for(int i=2;i<=500000;i++){
if(!np[i]) prime[++pnt]=i,mu[i]=-1;
for(int j=1;j<=pnt&&i<=500000/prime[j];j++){
np[i*prime[j]]=1;
if(i%prime[j]) mu[i*prime[j]]=-mu[i];
else break;
}
}
}
int main(){
Sieve();
int n,m,ans=0; scanf("%d%d",&n,&m);
if(n>m) swap(n,m);
for(int i=1;i<=500000;i++) mi[i]=1;
for(int g=1,gg;g<=n;g++){
gg=Pow(g,g);
for(int i=1;i<=m/g;i++)
mi[i]=1ll*mi[i]*i%mod,smi[i]=(1ll*smi[i-1]+mi[i])%mod;
for(int d=1;d<=n/g;d++)
ans=(1ll*ans+1ll*mu[d]*mi[d]%mod*mi[d]%mod*smi[n/(g*d)]%mod*smi[m/(g*d)]%mod*gg%mod)%mod;
}
printf("%d",ans);
return 0;
}

  

●BZOJ 3561 DZY Loves Math VI的更多相关文章

  1. BZOJ 3561 DZY Loves Math VI

    BZOJ 3561 DZY Loves Math VI 求\(\sum_{i=1}^{n}\sum_{j=1}^{m}\text{lcm}(i,j)^{\gcd(i,j)}\),钦定\(n\leq m ...

  2. BZOJ 3561: DZY Loves Math VI 莫比乌斯反演+复杂度分析

    推到了一个推不下去的形式,然后就不会了 ~ 看题解后傻了:我推的是对的,推不下去是因为不需要再推了. 复杂度看似很大,但其实是均摊 $O(n)$ 的,看来分析复杂度也是一个能力啊 ~ code: #i ...

  3. 【BZOJ 3561】 3561: DZY Loves Math VI (莫比乌斯,均摊log)

    3561: DZY Loves Math VI Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 205  Solved: 141 Description ...

  4. 【BZOJ】3561: DZY Loves Math VI

    题意 求\(\sum_{i=1}^{n} \sum_{j=1}^{m} lcm(i, j)^{gcd(i, j)}\)(\(n, m<=500000\)) 分析 很显然要死推莫比乌斯 题解 设\ ...

  5. 【BZOJ3561】DZY Loves Math VI (数论)

    [BZOJ3561]DZY Loves Math VI (数论) 题面 BZOJ 题解 \[\begin{aligned} ans&=\sum_{i=1}^n\sum_{j=1}^m\sum_ ...

  6. ●BZOJ 3309 DZY Loves Math

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3309 题解: 莫比乌斯反演,线筛 化一化式子: f(x)表示x的质因子分解中的最大幂指数 $ ...

  7. [BZOJ3561] DZY Loves Math VI

    (14.10.28改) 本来只想写BZOJ3739:DZY Loves Math VIII的,不过因为和VI有关系,而且也没别人写过VI的题解,那么写下. 不过我还不会插公式…… http://www ...

  8. BZOJ 3309: DZY Loves Math

    3309: DZY Loves Math Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 761  Solved: 401[Submit][Status ...

  9. BZOJ 3512: DZY Loves Math IV [杜教筛]

    3512: DZY Loves Math IV 题意:求\(\sum_{i=1}^n \sum_{j=1}^m \varphi(ij)\),\(n \le 10^5, m \le 10^9\) n较小 ...

随机推荐

  1. C语言博客作业--一二维数组

    一.PTA实验作业 题目1(7-6) (1).本题PTA提交列表 (2)设计思路 //天数n:数组下标i:小时数h,分钟数m:对应书号的标签数组flag[1001] //总阅读时间sum初始化为0,借 ...

  2. python 闭包计算移动均值及nonlocal的使用

    class Averager1(): '''计算移动平均值的类第一种写法''' def __init__(self): self.series = [] def __call__(self,new_v ...

  3. 团队作业4——第一次项目冲刺(Alpha版本)11.14

    a. 提供当天站立式会议照片一张 举行站立式会议,讨论项目安排: PM对整个项目的需求进行讲解: 全队对整个项目的细节进行沟通: 对整个项目的开发计划进行分析,分配每天的任务: 统一确定项目的开发环境 ...

  4. string类的简洁版实现

    说是原创,差不多算是转载了,我也是看了好多大牛的写法,大牛的建议,自己加一总结,形成代码: 实现一个简洁版的string类,我觉得,下面的也够了:另外需要参见另外的写法: http://blog.cs ...

  5. 【iOS】OC-UTC日期字符串格式化

    NSLog(@"%@",[NSDate date]); NSDateFormatter *dateFormatter = [[NSDateFormatter alloc] init ...

  6. iOS Storyboard unwind segues使用小结

    使用storyboard开发的时候,经常会在一个scene上添加一个button,再拖拽这个button到某个想要关联的页面,最后选择push的方式跳转.这样scene_A和scene_B就有了一个& ...

  7. 201421123042 《Java程序设计》第14周学习总结

    1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结与数据库相关内容. 答: 2. 使用数据库技术改造你的系统 2.1 简述如何使用数据库技术改造你的系统.要建立什么表?截图你的表设计 ...

  8. 第四十三条:返回零长度的数组或者集合,而不是null

    如果一个方法的返回值类型是集合或者数组 ,如果在方法内部需要返回的集合或者数组是零长度的,也就是没有实际对象在里面, 我们也应该放回一个零长度的数组或者集合,而不是返回null.如果返回了null,客 ...

  9. hdu 5274 Dylans loves tree

    Dylans loves tree http://acm.hdu.edu.cn/showproblem.php?pid=5274 Time Limit: 2000/1000 MS (Java/Othe ...

  10. 【译】Gradle 的依赖关系处理不当,可能导致你编译异常

    文章 | Ashesh Bharadwaj 翻译 | 承香墨影 授权 承香墨影 翻译.编辑并发布 在 Android Studio 中,Gradle 构建过程对于开发者来说,很大程度上是抽象的.作为一 ...