题链:

http://www.lydsy.com/JudgeOnline/problem.php?id=2820

题解:

莫比乌斯反演

先看看这个题:HDU 1695 GCD(本题简化版)

HDU 1695 GCD:求满足x∈(1~n)和y∈(1~m),且gcd(x,y)=k的(x,y)的对数。

而这个k是给定的。

可以由莫比乌斯反演得到:(详见●HDU 1695 GCD

$ANS=\sum_{d=1}^{n}\mu(d)\times\lfloor\frac{n}{d}\rfloor\times\lfloor\frac{m}{d}\rfloor$


但是本题的k是所有的质数,额...

我们可以先枚举一个质数p,然后仿照上面的做法,可以得到:

$ANS=\sum_p \sum_{d=1}^{n}\mu(d)\times\lfloor\frac{n/p}{d}\rfloor\times\lfloor\frac{m/p}{d}\rfloor$

这个复杂度还无法满足本题的数据。

然后把上面的求和式做如下化简:

令$T=pd$,

那么:$ANS=\sum_{T=1}^{n}{(}{\lfloor\frac{n}{T}\rfloor\lfloor\frac{m}{T}\rfloor} \sum_{p|T}\mu(\frac{T}{p}){)}$

如果可以预处理出$\sum_{p|T}\mu(\frac{T}{p})$的值,

那么上式就可以$O(n)$求出,

如果运用向下取整的特性进行分块计算,就可以达到$O(\sqrt{n})$的复杂度。

至于$\sum_{p|T}\mu(\frac{T}{p})$,有两种求法:

设$sum[T]=\sum_{p|T}\mu(\frac{T}{p})$

1.枚举每个质数p,然后把他的倍数$T=\lambda p的sum[T]+=\mu(\frac{T}{p})$

2.运用$\mu$是积性函数的性质,可以在线型筛时求出。

代码:

#include<cstdio>
#include<cstring>
#include<iostream>
#define MAXN 10000050
using namespace std;
long long ANS;
int musum[MAXN],mu[MAXN];
void Prime_Sieve(){
static bool np[MAXN],dp[MAXN]; mu[1]=1;
static int prime[MAXN],pnt;
for(int i=2;i<=10000000;i++){
if(!np[i]) prime[++pnt]=i,dp[i]=1,mu[i]=-1,musum[i]=1;
for(int j=1;j<=pnt&&i<=10000000/prime[j];j++){
np[i*prime[j]]=1; dp[i*prime[j]]=dp[i]&&i%prime[j];
mu[i*prime[j]]=i%prime[j]?-mu[i]:0;
if(i%prime[j]==0) musum[i*prime[j]]=dp[i]?mu[i]:0;
else musum[i*prime[j]]=musum[i]*mu[prime[j]]+mu[i];
if(i%prime[j]==0) break;
}
}
for(int i=1;i<=10000000;i++) musum[i]+=musum[i-1];
}
int main(){
int n,m,Case,mini;
Prime_Sieve(); scanf("%d",&Case);
//while(scanf("%d",&n)) printf("%d\n",musum[n]);
while(Case--){
scanf("%d%d",&n,&m); mini=min(n,m); ANS=0;
for(int i=1,last;i<=mini;i=last+1){
last=min(n/(n/i),m/(m/i));
ANS+=1ll*(musum[last]-musum[i-1])*(n/i)*(m/i);
}
printf("%lld\n",ANS);
}
return 0;
}

  

●BZOJ 2820 YY的GCD的更多相关文章

  1. 【莫比乌斯反演】关于Mobius反演与gcd的一些关系与问题简化(bzoj 2301 Problem b&&bzoj 2820 YY的GCD&&BZOJ 3529 数表)

    首先我们来看一道题  BZOJ 2301 Problem b Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd( ...

  2. [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)

    [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...

  3. BZOJ 2820: YY的GCD [莫比乌斯反演]【学习笔记】

    2820: YY的GCD Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1624  Solved: 853[Submit][Status][Discu ...

  4. 【刷题】BZOJ 2820 YY的GCD

    Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种傻×必然 ...

  5. Bzoj 2820: YY的GCD(莫比乌斯反演+除法分块)

    2820: YY的GCD Time Limit: 10 Sec Memory Limit: 512 MB Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x& ...

  6. bzoj 2820 YY的GCD 莫比乌斯反演

    题目大意: 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对 这里就抄一下别人的推断过程了 后面这个g(x) 算的方法就是在线性 ...

  7. bzoj 2820 YY的GCD - 莫比乌斯反演 - 线性筛

    Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必 ...

  8. BZOJ 2820 YY的GCD(莫比乌斯函数)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2820 题意:给定n,m.求1<=x<=n, 1<=y<=m且Gc ...

  9. bzoj 2820 YY的GCD(莫比乌斯反演)

    Description 神犇YY虐完数论后给傻×kAc出了一题 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对 kAc这种傻× ...

随机推荐

  1. C语言指针作业总结

    学号 姓名 作业地址 PTA实验作业5 PTA排名2 阅读代码2 总结1 代码规范 总分 是否推荐博客 推荐理由 32 **薇 http://www.cnblogs.com/linyiwei/p/80 ...

  2. 凡事预则立(Beta)

    听说--凡事预则立 吸取之前alpha冲刺的经验教训,也为了这次的beta冲刺可以更好更顺利地进行,更是为了迎接我们的新成员玮诗.我们开了一次组内会议,进行beta冲刺的规划. 上一张我们的合照: 具 ...

  3. 【Alpha】咸鱼冲刺日记第一天-黄紫仪

    总汇链接 一,合照 emmmmm.自然是没有的. 二,项目燃尽图 emmmmm,事实上它还没有正式开始.所以依旧没有[突然觉得明天任务真重] 三,项目进展 emmmmm,我错了咸鱼了两天才突然反应过来 ...

  4. Flask 学习 十一 关注者

    数据库关系 1.1多对多关系 添加第三张表(关联表),多对多关系可以分解成原表和关联表之间的两个一对多的关系 多对多仍然使用db.relationship()方法定义,但是secondary参数必须设 ...

  5. Hibernate之ORM与Hibernate

    ORM: ORM是 Object /Relation Mapping,对象/关系数据库映射. 目前比较流行的编程语言,如java ,c#等,它们都是面向对象的编程语言,而目前比较主流的数据库产品,如O ...

  6. zookeeper 入门系列-理论基础 – zab 协议

    上一章讨论了paxos算法,把paxos推到一个很高的位置.但是,paxos有没有什么问题呢?实际上,paxos还是有其自身的缺点的: 1. 活锁问题.在base-paxos算法中,不存在leader ...

  7. New UWP Community Toolkit - RotatorTile

    概述 UWP Community Toolkit  中有一个为图片或磁贴提供轮播效果的控件 - RotatorTile,本篇我们结合代码详细讲解  RotatorTile 的实现. RotatorTi ...

  8. AngularJS1.X学习笔记12-Ajax

    说到Ajax,你一定是思绪万千,想到XMLHttpRequest,$.ajax(),跨域,异步之类的.本文将探讨一下AngularJS的Ajax. 一.一个简单的例子 <!DOCTYPE htm ...

  9. Mego开发文档 - 保存关系数据

    保存关系数据 由于没有对象的更改跟踪,因此关系的操作需要开发者明确指定,在成功执行后Mego会影响到相应的关系属性中. 添加关系 在以下示例中如果成功执行则source的Customer属性会变为ta ...

  10. api-gateway实践(16)【租户模块:修改api定义】通过mq通知【开发者模块:更新开发者集市】

    一.订阅关系 二.接收消息 dev模块接收更新本地集市