1010: [HNOI2008]玩具装箱toy

Time Limit: 1 Sec  Memory Limit: 162 MB
Submit: 11893  Solved: 5061
[Submit][Status][Discuss]

Description

  P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压
缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。P教授有编号为1...N的N件玩具,第i件玩具经过
压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容
器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一
个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<=K<=j 制作容器的费用与容器的长度有关,根据教授研究,
如果容器长度为x,其制作费用为(X-L)^2.其中L是一个常量。P教授不关心容器的数目,他可以制作出任意长度的容
器,甚至超过L。但他希望费用最小.

Input

  第一行输入两个整数N,L.接下来N行输入Ci.1<=N<=50000,1<=L,Ci<=10^7

Output

  输出最小费用

Sample Input

5 4
3
4
2
1
4

Sample Output

1

HINT

 

Source

斜率优化dp入门题目  推式子还是有点麻烦

黄学长的推法比较简单 用换元法来推 http://hzwer.com/2114.html

 #include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
#include<cmath>
#include<vector>
#include<cstdlib>
#include<iostream>
#define ll long long
#define inf 2147483647
#define N 50005
using namespace std;
int q[N],h,t,n,a[N],L;
ll sum[N],f[N],dp[N]; ll G(int j,int k){
return dp[j]-dp[k]+(f[j]+L)*(f[j]+L)-(f[k]+L)*(f[k]+L);
} ll S(int j,int k){
return *(f[j]-f[k]);
}
int main(){
scanf("%d%d",&n,&L);L++;
for(int i=;i<=n;i++){
scanf("%d",&a[i]);
sum[i]=sum[i-]+a[i];
f[i]=sum[i]+i;
}
h=;t=;q[]=;
for(int i=;i<=n;i++){
while(h+<t&&G(q[h+],q[h])<=S(q[h+],q[h])*f[i])h++;//<=可换为<
dp[i]=dp[q[h]]+(f[i]-f[q[h]]-L)*(f[i]-f[q[h]]-L);
while(h+<t&&G(i,q[t-])*S(q[t-],q[t-])<=G(q[t-],q[t-])*S(i,q[t-]))t--;//<=可换为<
q[t++]=i;
}
printf("%lld",dp[n]);
return ;
}

bzoj1010[HNOI2008]玩具装箱toy 斜率优化dp的更多相关文章

  1. BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP

    1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...

  2. 【bzoj1010】[HNOI2008]玩具装箱toy 斜率优化dp

    题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具, ...

  3. [bzoj1010][HNOI2008]玩具装箱toy_斜率优化dp

    玩具装箱toy bzoj-1010 HNOI-2008 题目大意:P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一 ...

  4. P3195 [HNOI2008]玩具装箱TOY 斜率优化dp

    传送门:https://www.luogu.org/problem/P3195 题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任 ...

  5. [luogu3195 HNOI2008] 玩具装箱TOY (斜率优化dp)

    题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具, ...

  6. 洛谷P3195 [HNOI2008]玩具装箱TOY——斜率优化DP

    题目:https://www.luogu.org/problemnew/show/P3195 第一次用斜率优化...其实还是有点云里雾里的: 网上的题解都很详细,我的理解就是通过把式子变形,假定一个最 ...

  7. bzoj1010: [HNOI2008]玩具装箱toy——斜率优化

    方程 $\Large f(i)=min(f(j)+(s(i)-s(j)-1-L)^2)$ 其中$s(i)$为i的前缀和再加上$i$ 对于某个$i$若$j$比$k$优,则 $\large f(j)+(s ...

  8. [BZOJ1010] [HNOI2008] 玩具装箱toy (斜率优化)

    Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...

  9. Bzoj 1010: [HNOI2008]玩具装箱toy(斜率优化)

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MB Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定 ...

随机推荐

  1. 创建带缩进的XML

    from xml.etree import ElementTree as ET from xml.dom import minidom root = ET.Element('}) son=ET.Sub ...

  2. git中级技能

    中级技能(上)               一.实验说明 从本节开始,我们会介绍一些中级和高级的用法,这些用法很少用到,前面三节的内容已经满足了日常工作需要,从本节开始的内容可以简单了解,需要的时候再 ...

  3. python 操作MongoDB

    安装MongoDB 启动数据库:安装完成指定数据库存放路径 mongod.exe --dbpath c:\data\db进入目录后运行mongo.exe 成功 创建数据库 > use mydb ...

  4. JAVA_SE基础——18.方法的递归

    方法的递归是指在一个方法的内部调用自身的过程,递归必须要有结束条件,不然就会陷入无限递归的状态,永远无法结束调用,接下来用一个最简单的例子来体现下方法递归,使用递归算法计算自然数之和: public ...

  5. LeetCode & Q38-Count and Say-Easy

    String Description: The count-and-say sequence is the sequence of integers with the first five terms ...

  6. Spring Security入门(2-1)Spring Security - 重要的过滤器

    1.自定义的filter机制 如果要对Web资源进行保护,最好的办法莫过于Filter,要想对方法调用进行保护,最好的办法莫过于AOP. Acegi对Web资源的保护,就是靠Filter实现的.Ace ...

  7. Tomcat(1-1)重置Tomcat8.5管理员的用户名和密码

    1.访问 http://localhost:8080/,点击 [manager app],提示输入用户名和密码,admin/admin后报错.  2.解决办法:重置Tomcat8.5管理员的用户名和密 ...

  8. SQL Server 利用触发器对多表视图进行更新

    其步骤就是:利用update操作触发器产生的2个虚拟表[inserted]用来存储修改的数据信息和[deleted]表,然后将对应的数据更新到对应数据表中的字段信息中: 1.首先创建3个表: a.信息 ...

  9. margin-top塌陷

    margin-top 塌陷 在两个不浮动的盒子嵌套时候,内部的盒子设置的margin-top会加到外边的盒子上,导致内部的盒子margin-top设置失败,解决方法如下: 1.外部盒子设置一个边框: ...

  10. Android智能手机上的音频浅析

    手机可以说是现在人日常生活中最离不开的电子设备了.它自诞生以来,从模拟的发展到数字的,从1G发展到目前的4G以及不久将来的5G,从最初的只有唯一的功能(打电话)发展到目前的全功能,从功能机(featu ...