[BZOJ]2458: [BeiJing2011]最小三角形
题目大意:给出平面上n个点,求最小的由这些点组成的三角形的周长。(N<=200,000)
思路:点按x坐标排序后分治,每次取出与排在中间的点的横坐标相差不超当前答案一半的点,按y坐标排序后再暴力枚举y坐标相差不超过当前答案一半的三个点统计答案,复杂度O(能过)(听说期望nlogn)。
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
inline int read()
{
int x,f=;char c;
while((c=getchar())<''||c>'')if(c=='-')f=-;
for(x=c-'';(c=getchar())>=''&&c<='';)x=(x<<)+(x<<)+c-'';
return x*f;
}
#define MN 200000
double ans=1e18;
struct P{int x,y;}p[MN+],t[MN+];
bool cmpx(P a,P b){return a.x<b.x;}
bool cmpy(P a,P b){return a.y<b.y;}
double sqr(double x){return x*x;}
double len(P a,P b){return sqrt(sqr(a.x-b.x)+sqr(a.y-b.y));}
void solve(int l,int r)
{
if(r-l<)return;
int m=l+r>>,i,j,k,cnt=;
solve(l,m);solve(m+,r);
for(i=l;i<=r;++i)if(fabs(p[i].x-p[m].x)<ans/)t[++cnt]=p[i];
sort(t+,t+cnt+,cmpy);
for(i=;i<=cnt;++i)for(j=i+;j<=cnt&&t[j].y-t[i].y<ans/;++j)for(k=j+;k<=cnt&&t[k].y-t[i].y<ans/;++k)
ans=min(ans,len(t[i],t[j])+len(t[j],t[k])+len(t[k],t[i]));
}
int main()
{
int n=read(),i;
for(i=;i<=n;++i)p[i].x=read(),p[i].y=read();
sort(p+,p+n+,cmpx);
solve(,n);
printf("%.6lf",ans);
}
[BZOJ]2458: [BeiJing2011]最小三角形的更多相关文章
- bzoj 2458: [BeiJing2011]最小三角形 题解
[前言]话说好久没有写题解了.到暑假了反而忙.o(╯□╰)o [原题] 2458: [BeiJing2011]最小三角形 Time Limit: 10 Sec Memory Limit: 128 M ...
- BZOJ 2458: [BeiJing2011]最小三角形 | 平面分治
题目: 给出若干个点 求三个点构成的周长最小的三角形的周长(我们认为共线的三点也算三角形) 题解: 可以参考平面最近点对的做法 只不过合并的时候改成枚举三个点更新周长最小值,其他的和最近点对大同小异 ...
- BZOJ 2458: [BeiJing2011]最小三角形 (分治)
分治就是了. 类似于分治找最近/远点对. CODE #include <bits/stdc++.h> using namespace std; const double eps = 1e- ...
- bzoj-2458 2458: [BeiJing2011]最小三角形(计算几何+分治)
题目链接: 2458: [BeiJing2011]最小三角形 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1101 Solved: 380 Des ...
- 分治 - 计算几何 - BZOJ2458,[BeiJing2011]最小三角形
http://www.lydsy.com/JudgeOnline/problem.php?id=2458 [BeiJing2011]最小三角形 描述 Frisk现在遇到了一个有趣的问题. 平面上有N个 ...
- bzoj2458: [BeiJing2011]最小三角形(分治+几何)
题目链接:bzoj2458: [BeiJing2011]最小三角形 学习推荐博客:分治法编程问题之最接近点对问题的算法分析 题解:先将所有点按x值排列,然后每次将当前区间[l,r]分成左右两半递归求解 ...
- BZOJ2458 Beijing2011最小三角形(分治)
类似于平面最近点对,考虑分治,即分别计算分割线两侧的最小三角形再考虑跨过线的三角形. 复杂度证明也是类似的,对于某一个点,在另一侧可能与其构成最小三角形的点在一个d*d/2的矩形内(两边之和大于第三边 ...
- [BZOJ2458][BeiJing2011]最小三角形(分治)
求平面上n个点组成的周长最小的三角形. 回忆平面最近点对的做法,找到横坐标的中点mid分治到两边,合并时考虑离mid横坐标不超过当前最小值d的所有点,按y排序后暴力更新答案. 这个题也一样,先分治到两 ...
- BZOJ2458: [BeiJing2011]最小三角形
类似分治最近点对的方法乱搞一下就行. #include<bits/stdc++.h> #define N 200010 #define M (s+t>>1) using nam ...
随机推荐
- 设计模式NO.1
设计模式NO.1 根据作业要求完成下列题目: 题目1: (1)要求:某系统日志记录器要求支持多种日志记录方式,如文件记录.数据库记录等:用户可以根据要求动态选择日志记录方式.使用Factory模式来设 ...
- Linux进程调度分析
原文:http://www.2cto.com/os/201112/113229.html 操作系统要实现多进程,进程调度必不可少. 有人说,进程调度是操作系统中最为重要的一个部分.我觉得这种说法说得太 ...
- Tornado 用户身份验证框架
1.安全cookie机制 import tornado.web session_id = 1 class MainHandler(tornado.web.RequestHandler): def ge ...
- JAVA_SE基础——32.this关键字调用本类的构造方法
黑马程序员入学blog... 也算是学习笔记. 下面我们来看段代码: package day07; class Student{ int id; //身份证 String name; //名字 pub ...
- app测试中遇到问题总结
工作总结: 1 这两天由于工作,需要进行抓包,使用了Charles,fidder,发现一个坑点: charles没有抓到返回值的时候,默认是不在列表显示请求信息的,能不能设置,我就不知道了,但是可以在 ...
- Oracle闪回技术
(一)闪回技术概要 闪回技术是数据库备份与恢复的重要补充手段,主要包括以下7种特性: 特性 原理 数据库支持 闪回查询(Flashback Query) 利用undo表空间中的回退信息,查询过去某个时 ...
- Oracle10g物理DG详细配置方法及步骤
--测试环境: OS:Redhat linux(64) Primary: IP:192.168.94.198 SID:dgdb1 Hostname:dg1 DB_U ...
- aws - shadow 影子使用
参考链接: https://github.com/aws/aws-iot-device-sdk-java 一.设备注册 二.设备主题
- byte在计算机中的存储方式--Double.byteValue()的输出结果思考
先举三个栗子: 1. public static void main(String[] args) { Double d = new Double(123.56); byte b = d.byteVa ...
- [机器学习实战]K-近邻算法
1. K-近邻算法概述(k-Nearest Neighbor,KNN) K-近邻算法采用测量不同的特征值之间的距离方法进行分类.该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近 ...