bzoj 4870: [Shoi2017]组合数问题
Description
.jpg)
Solution
考虑这个式子的组合意义:
从 \(n*k\) 个球中取若干个球,使得球的数量 \(\%k=r\) 的方案数
可以转化为 \(DP\) 模型,设 \(f[i][j]\) 表示前 \(i\) 个步,取得球的数量 \(\%k=j\) 的方案数
\(f[i][j]=f[i-1][j]+f[i-1][j-1]\)
发现这个东西就是杨辉三角(胡话,此题无关)
这样就可以做 \(O(k^3log)\) 了,并且可以过了
网上还有一种做法:
设 \(f[i*2][a+b]=\sum f[i][a]*f[i][b]\)
然后矩阵就变成了一个行向量了,复杂度优化成了 \(O(k^2log)\)
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=51;
int mod,k,r;ll n;
struct mat{
int a[N];
mat(){memset(a,0,sizeof(a));}
inline mat operator *(const mat &p){
mat ret;
for(int i=0;i<k;i++)
for(int j=0;j<k;j++)
ret.a[(i+j)%k]=(ret.a[(i+j)%k]+1ll*a[i]*p.a[j])%mod;
return ret;
}
}S,T;
inline int qm(int x,int k){
ll sum=1;
while(k){
if(k&1)sum=1ll*x*sum%mod;
x=1ll*x*x%mod;k>>=1;
}return sum;
}
int main(){
freopen("pp.in","r",stdin);
freopen("pp.out","w",stdout);
cin>>n>>mod>>k>>r;
if(k==1)printf("%d\n",qm(2,n)),exit(0);
S.a[0]=1;S.a[1]=1;T=S;
n=n*k-1;
while(n){
if(n&1)S=S*T;
T=T*T;n>>=1;
}
printf("%d\n",S.a[r]);
return 0;
}
bzoj 4870: [Shoi2017]组合数问题的更多相关文章
- bzoj 4870: [Shoi2017]组合数问题 [矩阵乘法优化dp]
4870: [Shoi2017]组合数问题 题意:求 \[ \sum_{i=0}^{n-1} \binom{nk}{ik+r} \mod p \] \(n \le 10^9, 0\le r < ...
- BZOJ 4870 [Shoi2017]组合数问题 ——动态规划 矩阵乘法
注意到$r<k$ 别问我为什么要强调. 考场上前30分水水. 然后写阶乘的时候大力$n\log {n}$预处理 本机跑的挺快的,然后稳稳的T掉了. 然后就是简单的矩阵乘法了. #include ...
- BZOJ 4870: [Shoi2017]组合数问题 矩阵乘法_递推
Code: #include <cstdio> #include <cstring> #include <algorithm> #define setIO(s) f ...
- bzoj P4870: [Shoi2017]组合数问题——solution
题意:求解—— $$(C^{r}_{nk}+C^{r+k}_{nk}+C^{r+2k}_{nk}+...+C^{r+(n-1)k}_{nk}+...)mod(P)$$ 其中$C^{m}_{n}$表示从 ...
- BZOJ4870: [Shoi2017]组合数问题
4870: [Shoi2017]组合数问题 Description Input 第一行有四个整数 n, p, k, r,所有整数含义见问题描述. 1 ≤ n ≤ 10^9, 0 ≤ r < k ...
- [BZOJ4870][Shoi2017]组合数问题 dp+矩阵乘
4870: [Shoi2017]组合数问题 Time Limit: 10 Sec Memory Limit: 512 MB Description Input 第一行有四个整数 n, p, k, r ...
- BZOJ_4870_[Shoi2017]组合数问题_矩阵乘法
BZOJ_4870_[Shoi2017]组合数问题_矩阵乘法 Description Input 第一行有四个整数 n, p, k, r,所有整数含义见问题描述. 1 ≤ n ≤ 10^9, 0 ≤ ...
- [LOJ 2146][BZOJ 4873][Shoi2017]寿司餐厅
[LOJ 2146][BZOJ 4873][Shoi2017]寿司餐厅 题意 比较复杂放LOJ题面好了qaq... Kiana 最近喜欢到一家非常美味的寿司餐厅用餐. 每天晚上,这家餐厅都会按顺序提供 ...
- 【BZOJ4870】[Shoi2017]组合数问题 动态规划(矩阵乘法)
[BZOJ4870][Shoi2017]组合数问题 Description Input 第一行有四个整数 n, p, k, r,所有整数含义见问题描述. 1 ≤ n ≤ 10^9, 0 ≤ r < ...
随机推荐
- 2017-2018-1 我爱学Java 第三周 作业
Team Presentation 团队展示 队员学号 队名 团队项目描述 队员风采 团队首次合照 团队的特色描述 团队初步合作 前两周合作过程中的优缺点 如何改进 团队选题 确立,建立和初步熟悉团队 ...
- vim配置之taglist插件安装
上次说了不带插件的vim配置,今天补充两个,来日方长,不定期更新: 首先看一个路径: 下载ctags,将其中的ctags.exe复制到上边目录下边: 地址:https://sourceforge.ne ...
- initializer element is not a compile-time constant
初始化一个全局变量或static变量时,只能用常量赋值,不能用变量赋值! 如下就会报这个错误(KUIScreenWidth)是变量 static CGFloat const topButtonWidt ...
- Session的过期时间如何计算?
在生成session的时候,会设置一个session过期时间.session的过期时间并不是从生成session对象开始计算,超过过期时间,session就失效了. 而是每当一个浏览器请求,sessi ...
- bzoj千题计划276:bzoj4515: [Sdoi2016]游戏
http://www.lydsy.com/JudgeOnline/problem.php?id=4515 把lca带进式子,得到新的式子 然后就是 维护树上一次函数取min 一个调了一下午的错误: 当 ...
- Python——cmd调用(os.system阻塞处理)
os.system(返回值为0,1,2) 0:成功 1:失败 2:错误 os.system默认阻塞当前程序执行,在cmd命令前加入start可不阻塞当前程序执行. 例如: import os os.s ...
- big_menu菜单设置
1.页面 <script> $(function(){ $('.subnav .content-menu .on').after('<a class="add fb&quo ...
- kafka---broker 保存消息
1 .存储方式 物理上把 topic 分成一个或多个 patition(对应 server.properties 中的 num.partitions=3 配置),每个 patition 物理上对应一个 ...
- kafka之zookeeper 节点
1.zookeeper 节点 kafka 在 zookeeper 中的存储结构如下图所示:
- JavaScript中的单体模式四种实现方式
/* 1 简单单体 */ var Singleton = { attr1: 1 , method1:function(){ //do sth } }; alert(Singleton.attr1); ...