bzoj 4870: [Shoi2017]组合数问题
Description
.jpg)
Solution
考虑这个式子的组合意义:
从 \(n*k\) 个球中取若干个球,使得球的数量 \(\%k=r\) 的方案数
可以转化为 \(DP\) 模型,设 \(f[i][j]\) 表示前 \(i\) 个步,取得球的数量 \(\%k=j\) 的方案数
\(f[i][j]=f[i-1][j]+f[i-1][j-1]\)
发现这个东西就是杨辉三角(胡话,此题无关)
这样就可以做 \(O(k^3log)\) 了,并且可以过了
网上还有一种做法:
设 \(f[i*2][a+b]=\sum f[i][a]*f[i][b]\)
然后矩阵就变成了一个行向量了,复杂度优化成了 \(O(k^2log)\)
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=51;
int mod,k,r;ll n;
struct mat{
int a[N];
mat(){memset(a,0,sizeof(a));}
inline mat operator *(const mat &p){
mat ret;
for(int i=0;i<k;i++)
for(int j=0;j<k;j++)
ret.a[(i+j)%k]=(ret.a[(i+j)%k]+1ll*a[i]*p.a[j])%mod;
return ret;
}
}S,T;
inline int qm(int x,int k){
ll sum=1;
while(k){
if(k&1)sum=1ll*x*sum%mod;
x=1ll*x*x%mod;k>>=1;
}return sum;
}
int main(){
freopen("pp.in","r",stdin);
freopen("pp.out","w",stdout);
cin>>n>>mod>>k>>r;
if(k==1)printf("%d\n",qm(2,n)),exit(0);
S.a[0]=1;S.a[1]=1;T=S;
n=n*k-1;
while(n){
if(n&1)S=S*T;
T=T*T;n>>=1;
}
printf("%d\n",S.a[r]);
return 0;
}
bzoj 4870: [Shoi2017]组合数问题的更多相关文章
- bzoj 4870: [Shoi2017]组合数问题 [矩阵乘法优化dp]
4870: [Shoi2017]组合数问题 题意:求 \[ \sum_{i=0}^{n-1} \binom{nk}{ik+r} \mod p \] \(n \le 10^9, 0\le r < ...
- BZOJ 4870 [Shoi2017]组合数问题 ——动态规划 矩阵乘法
注意到$r<k$ 别问我为什么要强调. 考场上前30分水水. 然后写阶乘的时候大力$n\log {n}$预处理 本机跑的挺快的,然后稳稳的T掉了. 然后就是简单的矩阵乘法了. #include ...
- BZOJ 4870: [Shoi2017]组合数问题 矩阵乘法_递推
Code: #include <cstdio> #include <cstring> #include <algorithm> #define setIO(s) f ...
- bzoj P4870: [Shoi2017]组合数问题——solution
题意:求解—— $$(C^{r}_{nk}+C^{r+k}_{nk}+C^{r+2k}_{nk}+...+C^{r+(n-1)k}_{nk}+...)mod(P)$$ 其中$C^{m}_{n}$表示从 ...
- BZOJ4870: [Shoi2017]组合数问题
4870: [Shoi2017]组合数问题 Description Input 第一行有四个整数 n, p, k, r,所有整数含义见问题描述. 1 ≤ n ≤ 10^9, 0 ≤ r < k ...
- [BZOJ4870][Shoi2017]组合数问题 dp+矩阵乘
4870: [Shoi2017]组合数问题 Time Limit: 10 Sec Memory Limit: 512 MB Description Input 第一行有四个整数 n, p, k, r ...
- BZOJ_4870_[Shoi2017]组合数问题_矩阵乘法
BZOJ_4870_[Shoi2017]组合数问题_矩阵乘法 Description Input 第一行有四个整数 n, p, k, r,所有整数含义见问题描述. 1 ≤ n ≤ 10^9, 0 ≤ ...
- [LOJ 2146][BZOJ 4873][Shoi2017]寿司餐厅
[LOJ 2146][BZOJ 4873][Shoi2017]寿司餐厅 题意 比较复杂放LOJ题面好了qaq... Kiana 最近喜欢到一家非常美味的寿司餐厅用餐. 每天晚上,这家餐厅都会按顺序提供 ...
- 【BZOJ4870】[Shoi2017]组合数问题 动态规划(矩阵乘法)
[BZOJ4870][Shoi2017]组合数问题 Description Input 第一行有四个整数 n, p, k, r,所有整数含义见问题描述. 1 ≤ n ≤ 10^9, 0 ≤ r < ...
随机推荐
- Alpha第三天
Alpha第三天 听说 031502543 周龙荣(队长) 031502615 李家鹏 031502632 伍晨薇 031502637 张柽 031502639 郑秦 1.前言 任务分配是VV.ZQ. ...
- python实现k-近邻算法
参考:<机器学习实战>- Machine Learning in Action 一. 必备的包 实现此算法需要准备以下的包: • matplotlib,用于绘图 • numpy,数组处理库 ...
- 雷云Razer Synapse2.0使用测评 -第二次作业
雷蛇云驱动Razer Synapse2.0使用测评 雷蛇(Razer)是全球顶级游戏设备品牌之一,1998年由CEO Min-Liang Tan和Robert "Razerguy" ...
- 获取android项目的数据库地址或者数据库名
你不需要知道该路径.只是使用数据库,你可以将它们删除的列表. for (String databaseName : context.databaseList()) { context.deleteDa ...
- 几款有用的AndroidStudio插件
1.Android Parcelable code generator 顾名思义,这是个生成实现了Parcelable接口的代码的插件. 在你的类中,按下alt + insert键弹出插入代码的上下文 ...
- python 3.x 爬虫基础---常用第三方库(requests,BeautifulSoup4,selenium,lxml )
python 3.x 爬虫基础 python 3.x 爬虫基础---http headers详解 python 3.x 爬虫基础---Urllib详解 python 3.x 爬虫基础---常用第三方库 ...
- Raid 5数据恢复原理以及raid 5数据恢复实际操作案例
Raid 5数据恢复算法原理 要理解 raid 5数据恢复原理首先要先认识raid5,"分布式奇偶校验的独立磁盘结构"也就是我们称之为的raid 5数据恢复有一个概念需要理解,也就 ...
- nyoj Color the fence
Color the fence 时间限制:1000 ms | 内存限制:65535 KB 难度:2 描述 Tom has fallen in love with Mary. Now Tom w ...
- 08-TypeScript中的类
类的概念通常是在后端开发中实现的思想,比如C#.C++或Java,传统的JavaScript开发通过使用原型模式来模拟类的功能.在TypeScript中,天生就是支持类 的,可以让前端的开发更加具有面 ...
- react中的DOM操作
前面的话 某些情况下需要在典型数据流外强制修改子代.要修改的子代可以是 React 组件实例,也可以是 DOM 元素.这时就要用到refs来操作DOM 使用场景 下面是几个适合使用 refs 的情况 ...