FTRL(Follow The Regularized Leader)学习总结
摘要:
1.算法概述
2.算法要点与推导
3.算法特性及优缺点
4.注意事项
5.实现和具体例子
6.适用场合
内容:
1.算法概述
FTRL是一种适用于处理超大规模数据的,含大量稀疏特征的在线学习的常见优化算法,方便实用,而且效果很好,常用于更新在线的CTR预估模型;
FTRL
算法兼顾了FOBOS
和RDA
两种算法的优势,既能同FOBOS保证比较高的精度,又能在损失一定精度的情况下产生更好的稀疏性。
FTRL在处理带非光滑正则项(如L1正则)的凸优化问题上表现非常出色,不仅可以通过L1正则控制模型的稀疏度,而且收敛速度快;
参考:[笔记]FTRL与Online Optimization
2.算法要点与推导
3.算法特性及优缺点
FTRL-Proximal工程实现上的tricks:
1.saving memory
方案1)Poisson Inclusion:对某一维度特征所来的训练样本,以p的概率接受并更新模型。
方案2)Bloom Filter Inclusion:用bloom filter从概率上做某一特征出现k次才更新。
2.浮点数重新编码
1)特征权重不需要用32bit或64bit的浮点数存储,存储浪费空间
2)16bit encoding,但是要注意处理rounding技术对regret带来的影响(注:python可以尝试用numpy.float16格式)
3.训练若干相似model
1)对同一份训练数据序列,同时训练多个相似的model
2)这些model有各自独享的一些feature,也有一些共享的feature
3)出发点:有的特征维度可以是各个模型独享的,而有的各个模型共享的特征,可以用同样的数据训练。
4.Single Value Structure
1)多个model公用一个feature存储(例如放到cbase或redis中),各个model都更新这个共有的feature结构
2)对于某一个model,对于他所训练的特征向量的某一维,直接计算一个迭代结果并与旧值做一个平均
5.使用正负样本的数目来计算梯度的和(所有的model具有同样的N和P)
6.subsampling Training Data
1)在实际中,CTR远小于50%,所以正样本更加有价值。通过对训练数据集进行subsampling,可以大大减小训练数据集的大小
2)正样本全部采(至少有一个广告被点击的query数据),负样本使用一个比例r采样(完全没有广告被点击的query数据)。但是直接在这种采样上进行训练,会导致比较大的biased prediction
3)解决办法:训练的时候,对样本再乘一个权重。权重直接乘到loss上面,从而梯度也会乘以这个权重。
算法特点:
在线学习,实时性高;可以处理大规模稀疏数据;有大规模模型参数训练能力;根据不同的特征特征学习率
缺点:
4.注意事项
5.实现和具体例子
FTRL处理“Springleaf Marketing Response”数据
6.适用场合
点击率模型
FTRL(Follow The Regularized Leader)学习总结的更多相关文章
- Alink漫谈(十二) :在线学习算法FTRL 之 整体设计
Alink漫谈(十二) :在线学习算法FTRL 之 整体设计 目录 Alink漫谈(十二) :在线学习算法FTRL 之 整体设计 0x00 摘要 0x01概念 1.1 逻辑回归 1.1.1 推导过程 ...
- Alink漫谈(十三) :在线学习算法FTRL 之 具体实现
Alink漫谈(十三) :在线学习算法FTRL 之 具体实现 目录 Alink漫谈(十三) :在线学习算法FTRL 之 具体实现 0x00 摘要 0x01 回顾 0x02 在线训练 2.1 预置模型 ...
- 在线最优化求解(Online Optimization)之一:预备篇
在线最优化求解(Online Optimization)之一:预备篇 动机与目的 在实际工作中,无论是工程师.项目经理.产品同学都会经常讨论一类话题:“从线上对比的效果来看,某某特征或因素对xx产品的 ...
- 在线机器学习FTRL(Follow-the-regularized-Leader)算法介绍
看到好文章,坚决转载!哈哈,学术目的~~ 最近几个同事在做推荐平台的项目,都问到怎么实现FTRL算法,要求协助帮忙实现FTRL的算法模块.今天也是有空,赶紧来做个整理.明天还要去上海参加天善智能组织的 ...
- 在线优化算法 FTRL 的原理与实现
在线学习想要解决的问题 在线学习 ( \(\it{Online \;Learning}\) ) 代表了一系列机器学习算法,特点是每来一个样本就能训练,能够根据线上反馈数据,实时快速地进行模型调整,使得 ...
- 在线最优化求解(Online Optimization)之五:FTRL
在线最优化求解(Online Optimization)之五:FTRL 在上一篇博文中中我们从原理上定性比较了L1-FOBOS和L1-RDA在稀疏性上的表现.有实验证明,L1-FOBOS这一类基于梯度 ...
- Learning to rank基本算法
搜索排序相关的方法,包括 Learning to rank 基本方法 Learning to rank 指标介绍 LambdaMART 模型原理 FTRL 模型原理 Learning to rank ...
- 在线学习--online learning
在线学习 online learning Online learning并不是一种模型,而是模型的训练方法.能够根据线上反馈数据,实时快速的进行模型调优,使得模型能够及时反映线上的变化,提高线上预测的 ...
- kafka学习(二)-------- 什么是Kafka
通过Kafka的快速入门 https://www.cnblogs.com/tree1123/p/11150927.html 能了解到Kafka的基本部署,使用,但他和其他的消息中间件有什么不同呢? K ...
随机推荐
- 详解k8s组件Ingress边缘路由器并落地到微服务 - kubernetes
写在前面 Ingress 英文翻译 进入;进入权;进食,更准确的讲就是入口,即外部流量进入k8s集群必经之口.这到大门到底有什么作用?我们如何使用Ingress?k8s又是如何进行服务发现的呢?先看一 ...
- DDGScreenShot--iOS 图片裁剪,切圆角,加边框,你还用cornerRadius,还有更高级的用法
写在前面 我们肯定做过这样的需求,给一个图片切圆角, 当然我们大多采用简单粗暴的方法 myIcon.layer.cornerRadius = 16.5 myIcon.layer.masksToBoun ...
- sql server数据字符串分割功能sql
--分割字符串函数 create FUNCTION [dbo].[GetSplitStringValueInIndex] ( ), --要分割的字符串 ), --分隔符号 @index INT --取 ...
- Django模型层之字段查询参数及聚合函数
该系列教程系个人原创,并完整发布在个人官网刘江的博客和教程 所有转载本文者,需在顶部显著位置注明原作者及www.liujiangblog.com官网地址. 字段查询是指如何指定SQL WHERE子句的 ...
- jquery touch 移动端上下滑动加载
var touchStart, touchEnd, touchDiff = 80; $(window).on({ 'touchstart': function (e) { touchStart = e ...
- Cookie熟知
Cookie能干什么 会话(cookie,session)技术的一种.因为http协议是无状态的,每次都是基于一个请求一个响应.每次请求和响应都跟上次没有关系.我们需要记录之前对话信息.cookie技 ...
- linux 文件传输 SCP
SCP :secure copy (remote file copy program) 也是一个基于SSH安全协议的文件传输命令.与sftp不同的是,它只提供主机间的文件传输功能,没有文件管理的功能. ...
- LogicalDOC office预览中文乱码的问题
近期在试用LogicalDOC,一个文档管理系统. 上传的office文件预览中文乱码 问题原因是LibreOffice缺少对应的中文字体导致,只需要把对应的中文字体拷贝到/opt/libreoffi ...
- ztre的使用入门
1.首先需要下载ztree插件, 2.把下载的插件中的js和css放到项目中去(img文件默认放到css文件下方,如果把img文件放到其他地方,加载出来的树将没有默认图标(文件夹图标)和节点前的展开闭 ...
- 解决redis connection refused: connect无法连接redis
环境 VM VirtualBox安装虚拟机CentOS 7 1.Redis.conf配置文件中 注释掉 bind 127.0.0.1 2.防火墙关闭(或添加可访问的端口,具体不在此描述) 最后一个坑 ...