FTRL(Follow The Regularized Leader)学习总结
摘要:
1.算法概述
2.算法要点与推导
3.算法特性及优缺点
4.注意事项
5.实现和具体例子
6.适用场合
内容:
1.算法概述
FTRL是一种适用于处理超大规模数据的,含大量稀疏特征的在线学习的常见优化算法,方便实用,而且效果很好,常用于更新在线的CTR预估模型;
FTRL
算法兼顾了FOBOS
和RDA
两种算法的优势,既能同FOBOS保证比较高的精度,又能在损失一定精度的情况下产生更好的稀疏性。
FTRL在处理带非光滑正则项(如L1正则)的凸优化问题上表现非常出色,不仅可以通过L1正则控制模型的稀疏度,而且收敛速度快;
参考:[笔记]FTRL与Online Optimization
2.算法要点与推导
3.算法特性及优缺点
FTRL-Proximal工程实现上的tricks:
1.saving memory
方案1)Poisson Inclusion:对某一维度特征所来的训练样本,以p的概率接受并更新模型。
方案2)Bloom Filter Inclusion:用bloom filter从概率上做某一特征出现k次才更新。
2.浮点数重新编码
1)特征权重不需要用32bit或64bit的浮点数存储,存储浪费空间
2)16bit encoding,但是要注意处理rounding技术对regret带来的影响(注:python可以尝试用numpy.float16格式)
3.训练若干相似model
1)对同一份训练数据序列,同时训练多个相似的model
2)这些model有各自独享的一些feature,也有一些共享的feature
3)出发点:有的特征维度可以是各个模型独享的,而有的各个模型共享的特征,可以用同样的数据训练。
4.Single Value Structure
1)多个model公用一个feature存储(例如放到cbase或redis中),各个model都更新这个共有的feature结构
2)对于某一个model,对于他所训练的特征向量的某一维,直接计算一个迭代结果并与旧值做一个平均
5.使用正负样本的数目来计算梯度的和(所有的model具有同样的N和P)
6.subsampling Training Data
1)在实际中,CTR远小于50%,所以正样本更加有价值。通过对训练数据集进行subsampling,可以大大减小训练数据集的大小
2)正样本全部采(至少有一个广告被点击的query数据),负样本使用一个比例r采样(完全没有广告被点击的query数据)。但是直接在这种采样上进行训练,会导致比较大的biased prediction
3)解决办法:训练的时候,对样本再乘一个权重。权重直接乘到loss上面,从而梯度也会乘以这个权重。
算法特点:
在线学习,实时性高;可以处理大规模稀疏数据;有大规模模型参数训练能力;根据不同的特征特征学习率
缺点:
4.注意事项
5.实现和具体例子
FTRL处理“Springleaf Marketing Response”数据
6.适用场合
点击率模型
FTRL(Follow The Regularized Leader)学习总结的更多相关文章
- Alink漫谈(十二) :在线学习算法FTRL 之 整体设计
Alink漫谈(十二) :在线学习算法FTRL 之 整体设计 目录 Alink漫谈(十二) :在线学习算法FTRL 之 整体设计 0x00 摘要 0x01概念 1.1 逻辑回归 1.1.1 推导过程 ...
- Alink漫谈(十三) :在线学习算法FTRL 之 具体实现
Alink漫谈(十三) :在线学习算法FTRL 之 具体实现 目录 Alink漫谈(十三) :在线学习算法FTRL 之 具体实现 0x00 摘要 0x01 回顾 0x02 在线训练 2.1 预置模型 ...
- 在线最优化求解(Online Optimization)之一:预备篇
在线最优化求解(Online Optimization)之一:预备篇 动机与目的 在实际工作中,无论是工程师.项目经理.产品同学都会经常讨论一类话题:“从线上对比的效果来看,某某特征或因素对xx产品的 ...
- 在线机器学习FTRL(Follow-the-regularized-Leader)算法介绍
看到好文章,坚决转载!哈哈,学术目的~~ 最近几个同事在做推荐平台的项目,都问到怎么实现FTRL算法,要求协助帮忙实现FTRL的算法模块.今天也是有空,赶紧来做个整理.明天还要去上海参加天善智能组织的 ...
- 在线优化算法 FTRL 的原理与实现
在线学习想要解决的问题 在线学习 ( \(\it{Online \;Learning}\) ) 代表了一系列机器学习算法,特点是每来一个样本就能训练,能够根据线上反馈数据,实时快速地进行模型调整,使得 ...
- 在线最优化求解(Online Optimization)之五:FTRL
在线最优化求解(Online Optimization)之五:FTRL 在上一篇博文中中我们从原理上定性比较了L1-FOBOS和L1-RDA在稀疏性上的表现.有实验证明,L1-FOBOS这一类基于梯度 ...
- Learning to rank基本算法
搜索排序相关的方法,包括 Learning to rank 基本方法 Learning to rank 指标介绍 LambdaMART 模型原理 FTRL 模型原理 Learning to rank ...
- 在线学习--online learning
在线学习 online learning Online learning并不是一种模型,而是模型的训练方法.能够根据线上反馈数据,实时快速的进行模型调优,使得模型能够及时反映线上的变化,提高线上预测的 ...
- kafka学习(二)-------- 什么是Kafka
通过Kafka的快速入门 https://www.cnblogs.com/tree1123/p/11150927.html 能了解到Kafka的基本部署,使用,但他和其他的消息中间件有什么不同呢? K ...
随机推荐
- PyCharm中HTML页面CSS class名称自动完成功能失效的问题
如果这个HTML页面带有style元素的CSS定义,那class name自动完成功能就失效了 Pycharm Version:5.03
- vfd with stm8
2018-01-14 22:50:26 之前写了pt6311的驱动,要做时钟考虑使用stm8做主控,于是乎将之前的驱动移植到stm8上. 顺带熟悉了stm8的操作2333. 上源码: #ifndef ...
- Ocelot中文文档-转换Claims
Ocelot允许用户访问claims并把它们转换到头部,请求字符串参数和其他claims中.这仅在用户通过身份验证后才可用. 用户通过身份验证之后,我们运行claims转换中间件.这个中间件允许在授权 ...
- Coursera-AndrewNg(吴恩达)机器学习笔记——第一周
一.初识机器学习 何为机器学习?A computer program is said to learn from experience E with respect to some task T an ...
- Rafy 领域实体框架简介
按照最新的功能,更新了最新版的<Rafy 领域实体框架的介绍>,内容如下: 本文包含以下章节: 简介 特点 优势 简介 Rafy 领域实体框架是一个轻量级 ORM 框架. 与一般的 ORM ...
- python笔记:#013#高级变量类型
高级变量类型 目标 列表 元组 字典 字符串 公共方法 变量高级 知识点回顾 Python 中数据类型可以分为 数字型 和 非数字型 数字型 整型 (int) 浮点型(float) 布尔型(bool) ...
- rsync 密钥文件错误问题总结
rsync 可以使用 --password-file 选项指定密钥文件,密钥文件中简单存放 rsync 密码:在第一次使用密钥文件的时候经常遇到文件权限相关问题:这里总结一下,我遇到的问题. 问题描述 ...
- JavaScript的数组知识案例之随机点名器
本次分享JavaScript主要知识点涉及到for循环.if选择结构判断语句.数组的定义.定时器.清除定时器.日期对象的使用. 执行后效果图: 思路: 1.网页结构搭建: HTML 2.网页布局美化: ...
- CF#483(div2 C)
http://codeforces.com/contest/984/problem/C C. Finite or not time limit per test 1 second memory lim ...
- PAT1032: Sharing (25)
1032. Sharing (25) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue To store Engl ...