Description

JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们。
JYY 想知道,把这些特产分给N 个同学,一共有多少种不同的分法?当然,JYY 不希望任何一个同学因为没有拿到特产而感到失落,所以每个同学都必须至少分得一个特产。
例如,JYY 带来了2 袋麻花和1 袋包子,分给A 和B 两位同学,那么共有4 种不同的分配方法:
A:麻花,B:麻花、包子
A:麻花、麻花,B:包子
A:包子,B:麻花、麻花
A:麻花、包子,B:麻花

Input

输入数据第一行是同学的数量N 和特产的数量M。
第二行包含M 个整数,表示每一种特产的数量。
N, M 不超过1000,每一种特产的数量不超过1000

Output

输出一行,不同分配方案的总数。由于输出结果可能非常巨大,你只需要输出最终结果MOD 1,000,000,007 的数值就可以了。

Sample Input

5 4
1 3 3 5

Sample Output

384835

题解

想到了隔板法,想到了容斥...就是不知道怎么写...

对于总共$n$个人,很容易想到第$i$个物品,分出的方案数为$C^{n-1} _{a[i]+n-1}$,其中$a[i]$为个数(隔板法)。

但是这样做就会导致有人分不到特产。

考虑容斥,我们-一个人分不到的情况+两个人分不到的情况-三个人...

我们直接限定隔板的数目来强制一些人分不到特产,即方案数变为$C^{n-1-i} _{a[j]+n-1-i}$,其中$i$个人强制分不到,第$j$个物品。

注意最后,因为分不到的人可以是任意的,所以每次容斥还要*$C^i _n$。

 //It is made by Awson on 2017.9.25
#include <set>
#include <map>
#include <cmath>
#include <ctime>
#include <queue>
#include <stack>
#include <string>
#include <cstdio>
#include <vector>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define LL long long
using namespace std;
const int N = ;
const int MOD = ; int n, m, mx;
int a[N+];
int C[N*+][N*+]; void work() {
scanf("%d%d", &n, &m);
for (int i = ; i <= m; i++) {
scanf("%d", &a[i]);
mx = Max(mx, a[i]);
}
mx += n;
for (int i = ; i <= mx; i++) {
C[i][] = ;
for (int j = ; j <= i; j++)
C[i][j] = (C[i-][j-]+C[i-][j])%MOD;
}
LL ans = ;
for (int i = ; i < n; i++) {
LL cnt = ;
for (int j = ; j <= m; j++)
cnt = cnt*C[a[j]+n--i][n--i]%MOD;
cnt = cnt*C[n][i]%MOD;
if (i%) ans = (ans+MOD-cnt)%MOD;
else ans = (ans+cnt)%MOD;
}
printf("%lld\n", ans);
}
int main() {
work();
return ;
}

[JSOI 2011]分特产的更多相关文章

  1. BZOJ 4710: [Jsoi2011]分特产 [容斥原理]

    4710: [Jsoi2011]分特产 题意:m种物品分给n个同学,每个同学至少有一个物品,求方案数 对于每种物品是独立的,就是分成n组可以为空,然后可以用乘法原理合起来 容斥容斥 \[ 每个同学至少 ...

  2. ●BZOJ 4710 [Jsoi2011]分特产

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4710 题解: 容斥,组合先看看这个方案数的计算:把 M 个相同的东西分给 N 个人,每个人可 ...

  3. bzoj4710: [Jsoi2011]分特产 组合+容斥

    4710: [Jsoi2011]分特产 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 289  Solved: 198[Submit][Status] ...

  4. bzoj4710 [Jsoi2011]分特产(容斥)

    4710: [Jsoi2011]分特产 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 814  Solved: 527[Submit][Status] ...

  5. 4710: [Jsoi2011]分特产

    4710: [Jsoi2011]分特产 链接 分析: 容斥原理+隔板法. 代码: #include<cstdio> #include<algorithm> #include&l ...

  6. 【BZOJ4710】[JSOI2011]分特产(容斥)

    [BZOJ4710]分特产(容斥) 题面 BZOJ 题解 比较简单吧... 设\(f[i]\)表示至多有\(i\)个人拿到东西的方案数. \(f[i]=\prod_{j=1}^m C_{m+i-1}^ ...

  7. 【BZOJ 4710】 4710: [Jsoi2011]分特产 (容斥原理)

    4710: [Jsoi2011]分特产 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 99  Solved: 65 Description JYY 带 ...

  8. [BZOJ4710][JSOI2011]分特产(组合数+容斥原理)

    4710: [Jsoi2011]分特产 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 395  Solved: 262[Submit][Status] ...

  9. BZOJ 4710 [Jsoi2011]分特产 解题报告

    4710 [Jsoi2011]分特产 题意 给定\(n\)个集合,每个集合有相同的\(a_i\)个元素,不同的集合的元素不同.将所有的元素分给\(m\)个不同位置,要求每个位置至少有一个元素,求分配方 ...

随机推荐

  1. Python-turtle库知识小结(python绘图工具)

    turtle:海龟(海龟库) Turtle库是Python语言中一个很流行的绘制图像的函数库 使用之前需要导入库:import turtle • turtle.setup(width,height,s ...

  2. linux分析、诊断及调优必备的“杀器”之二

    先说明下,之所以同类内容分成多篇文章,不是为了凑篇数,而是为了便于自己和大家阅读,下面继续: 7.sar The sar command is used to collect, report, and ...

  3. 【Java】0X001.配置开发环境,JDK、classpath等

    [Java]0x01 配置开发环境,JDK.CLASSPATH等 一. 下载JDK安装文件 首先,进入Oracle官网Java页面. 注意,要下载的是JDK而不是JRE,这点很重要,因为JRE并不包含 ...

  4. 关于GPUImage的导入

    对于GPUImage的使用方面,GitHub上已经非常详细了,就不一一赘述了,但是对于项目的导入来说,最好的方式是 1.下载GPUImage并解压 2.打开压缩包后如图 3.打开终端,cd到此目录 4 ...

  5. js 选择图片生成base64数据

    <!doctype html> <html> <head> <meta charset="utf-8"> <meta http ...

  6. bzoj 4373 算术天才⑨与等差数列

    4373: 算术天才⑨与等差数列 Time Limit: 10 Sec  Memory Limit: 128 MBhttp://www.lydsy.com/JudgeOnline/problem.ph ...

  7. animation & @keyframes 实现loading效果

    效果图截图如下: 直接上代码: html <!DOCTYPE html> <html> <head> <meta charset="utf-8&qu ...

  8. js 时间戳 vue 时间戳的转换 ?

    在没有用vue做项目之前 也遇到过戳转换的问题 直接函数 调用 方法 这个也可以写成vue的  把function去掉  formatDate后面加冒号 就可以了 当然这个不是原创 但是是谁的我忘记了 ...

  9. 作业五:RE 模块模拟计算器

    # !/usr/bin/env python3 # _*_coding:utf-8_*_ ''' 实现模拟计算器的功能: 公式: - * ( (- +(-/) * (-*/ + /*/* + * / ...

  10. WPF 自定义RadioButton样式

    一.RadioButton基本样式 RadioButton基本样式包含两种状态,这里也是使用两张图片来代替两种状态,当然你也可以通过IconFont或Path来替换这两种状态. 效果如下: 样式代码如 ...