Description

JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们。
JYY 想知道,把这些特产分给N 个同学,一共有多少种不同的分法?当然,JYY 不希望任何一个同学因为没有拿到特产而感到失落,所以每个同学都必须至少分得一个特产。
例如,JYY 带来了2 袋麻花和1 袋包子,分给A 和B 两位同学,那么共有4 种不同的分配方法:
A:麻花,B:麻花、包子
A:麻花、麻花,B:包子
A:包子,B:麻花、麻花
A:麻花、包子,B:麻花

Input

输入数据第一行是同学的数量N 和特产的数量M。
第二行包含M 个整数,表示每一种特产的数量。
N, M 不超过1000,每一种特产的数量不超过1000

Output

输出一行,不同分配方案的总数。由于输出结果可能非常巨大,你只需要输出最终结果MOD 1,000,000,007 的数值就可以了。

Sample Input

5 4
1 3 3 5

Sample Output

384835

题解

想到了隔板法,想到了容斥...就是不知道怎么写...

对于总共$n$个人,很容易想到第$i$个物品,分出的方案数为$C^{n-1} _{a[i]+n-1}$,其中$a[i]$为个数(隔板法)。

但是这样做就会导致有人分不到特产。

考虑容斥,我们-一个人分不到的情况+两个人分不到的情况-三个人...

我们直接限定隔板的数目来强制一些人分不到特产,即方案数变为$C^{n-1-i} _{a[j]+n-1-i}$,其中$i$个人强制分不到,第$j$个物品。

注意最后,因为分不到的人可以是任意的,所以每次容斥还要*$C^i _n$。

 //It is made by Awson on 2017.9.25
#include <set>
#include <map>
#include <cmath>
#include <ctime>
#include <queue>
#include <stack>
#include <string>
#include <cstdio>
#include <vector>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define LL long long
using namespace std;
const int N = ;
const int MOD = ; int n, m, mx;
int a[N+];
int C[N*+][N*+]; void work() {
scanf("%d%d", &n, &m);
for (int i = ; i <= m; i++) {
scanf("%d", &a[i]);
mx = Max(mx, a[i]);
}
mx += n;
for (int i = ; i <= mx; i++) {
C[i][] = ;
for (int j = ; j <= i; j++)
C[i][j] = (C[i-][j-]+C[i-][j])%MOD;
}
LL ans = ;
for (int i = ; i < n; i++) {
LL cnt = ;
for (int j = ; j <= m; j++)
cnt = cnt*C[a[j]+n--i][n--i]%MOD;
cnt = cnt*C[n][i]%MOD;
if (i%) ans = (ans+MOD-cnt)%MOD;
else ans = (ans+cnt)%MOD;
}
printf("%lld\n", ans);
}
int main() {
work();
return ;
}

[JSOI 2011]分特产的更多相关文章

  1. BZOJ 4710: [Jsoi2011]分特产 [容斥原理]

    4710: [Jsoi2011]分特产 题意:m种物品分给n个同学,每个同学至少有一个物品,求方案数 对于每种物品是独立的,就是分成n组可以为空,然后可以用乘法原理合起来 容斥容斥 \[ 每个同学至少 ...

  2. ●BZOJ 4710 [Jsoi2011]分特产

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4710 题解: 容斥,组合先看看这个方案数的计算:把 M 个相同的东西分给 N 个人,每个人可 ...

  3. bzoj4710: [Jsoi2011]分特产 组合+容斥

    4710: [Jsoi2011]分特产 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 289  Solved: 198[Submit][Status] ...

  4. bzoj4710 [Jsoi2011]分特产(容斥)

    4710: [Jsoi2011]分特产 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 814  Solved: 527[Submit][Status] ...

  5. 4710: [Jsoi2011]分特产

    4710: [Jsoi2011]分特产 链接 分析: 容斥原理+隔板法. 代码: #include<cstdio> #include<algorithm> #include&l ...

  6. 【BZOJ4710】[JSOI2011]分特产(容斥)

    [BZOJ4710]分特产(容斥) 题面 BZOJ 题解 比较简单吧... 设\(f[i]\)表示至多有\(i\)个人拿到东西的方案数. \(f[i]=\prod_{j=1}^m C_{m+i-1}^ ...

  7. 【BZOJ 4710】 4710: [Jsoi2011]分特产 (容斥原理)

    4710: [Jsoi2011]分特产 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 99  Solved: 65 Description JYY 带 ...

  8. [BZOJ4710][JSOI2011]分特产(组合数+容斥原理)

    4710: [Jsoi2011]分特产 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 395  Solved: 262[Submit][Status] ...

  9. BZOJ 4710 [Jsoi2011]分特产 解题报告

    4710 [Jsoi2011]分特产 题意 给定\(n\)个集合,每个集合有相同的\(a_i\)个元素,不同的集合的元素不同.将所有的元素分给\(m\)个不同位置,要求每个位置至少有一个元素,求分配方 ...

随机推荐

  1. C语言第五次作业函数

    一.PTA实验作业 题目1: 6-6 使用函数输出水仙花数 1.本题PTA提交列表 2.设计思路 1.narcissistic函数 1.由于number的值后面会变化,所以定义d,e用于储存numbe ...

  2. 20162302 实验三《敏捷开发与XP实践》实验报告

    实 验 报 告 课程:程序设计与数据结构 姓名:杨京典 班级:1623 学号:20162302 实验名称:敏捷开发与XP实践 实验器材:装有IdeaU的联想拯救者80RQ 实验目的与要求:1.代码的格 ...

  3. Alpha冲刺Day12

    Alpha冲刺Day12 一:站立式会议 今日安排: 由黄腾飞和张梨贤继续完成政府人员模块下的风险管控子模块下的分级统计展示 由林静继续完成企业注册模块 由周静平完成登录页面模块 二:实际项目进展 人 ...

  4. vue2 前端搜索实现

    项目数据少的时候,搜索这样的小事情就要交给咱们前端来做了,重要声明,适用于小项目!!!!! 其实原理很简单,小demo是做搜索市区名称或者按照排名搜索. <div> <input t ...

  5. 第201621123043 《Java程序设计》第14周学习总结

    1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结与数据库相关内容. 2. 使用数据库技术改造你的系统 2.1 简述如何使用数据库技术改造你的系统.要建立什么表?截图你的表设计. 2 ...

  6. 201421123042 《Java程序设计》第8周学习总结

    1. 本周学习总结 以你喜欢的方式(思维导图或其他)归纳总结集合相关内容. 2. 书面作业 1. ArrayList代码分析 1.1 解释ArrayList的contains源代码 源代码: 答:查找 ...

  7. Codeforces 193 D. Two Segments

    http://codeforces.com/contest/193/problem/D 题意: 给一个1~n的排列,在这个排列中选出两段区间,求使选出的元素排序后构成公差为1的等差数列的方案数. 换个 ...

  8. vue 手机端开发 小商铺 添加购物车 以及结算 功能

    这个功能绕了我一天!!!            对 就是这个功能  一系列相关联的  四处相关联 现在加班 没时间更 过两天在更

  9. GIT的安装及命令使用

    http://blog.jobbole.com/78960/ 因此:多人协作工作模式一般是这样的: 首先,可以试图用git push origin branch-name推送自己的修改. 如果推送失败 ...

  10. windows7.0旗舰版安装后控制面板自带的Microsoft程序

    1.不要卸载,否则会出现安装其他软件时缺少动态链接库