[LeetCode] Maximum Subarray 最大子数组
Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.
Example:
Input: [-2,1,-3,4,-1,2,1,-5,4],
Output: 6
Explanation: [4,-1,2,1] has the largest sum = 6.
Follow up:
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
这道题让求最大子数组之和,并且要用两种方法来解,分别是 O(n) 的解法,还有用分治法 Divide and Conquer Approach,这个解法的时间复杂度是 O(nlgn),那就先来看 O(n) 的解法,定义两个变量 res 和 curSum,其中 res 保存最终要返回的结果,即最大的子数组之和,curSum 初始值为0,每遍历一个数字 num,比较 curSum + num 和 num 中的较大值存入 curSum,然后再把 res 和 curSum 中的较大值存入 res,以此类推直到遍历完整个数组,可得到最大子数组的值存在 res 中,代码如下:
C++ 解法一:
class Solution {
public:
int maxSubArray(vector<int>& nums) {
int res = INT_MIN, curSum = ;
for (int num : nums) {
curSum = max(curSum + num, num);
res = max(res, curSum);
}
return res;
}
};
Java 解法一:
public class Solution {
public int maxSubArray(int[] nums) {
int res = Integer.MIN_VALUE, curSum = 0;
for (int num : nums) {
curSum = Math.max(curSum + num, num);
res = Math.max(res, curSum);
}
return res;
}
}
题目还要求我们用分治法 Divide and Conquer Approach 来解,这个分治法的思想就类似于二分搜索法,需要把数组一分为二,分别找出左边和右边的最大子数组之和,然后还要从中间开始向左右分别扫描,求出的最大值分别和左右两边得出的最大值相比较取最大的那一个,代码如下:
C++ 解法二:
class Solution {
public:
int maxSubArray(vector<int>& nums) {
if (nums.empty()) return ;
return helper(nums, , (int)nums.size() - );
}
int helper(vector<int>& nums, int left, int right) {
if (left >= right) return nums[left];
int mid = left + (right - left) / ;
int lmax = helper(nums, left, mid - );
int rmax = helper(nums, mid + , right);
int mmax = nums[mid], t = mmax;
for (int i = mid - ; i >= left; --i) {
t += nums[i];
mmax = max(mmax, t);
}
t = mmax;
for (int i = mid + ; i <= right; ++i) {
t += nums[i];
mmax = max(mmax, t);
}
return max(mmax, max(lmax, rmax));
}
};
Java 解法二:
public class Solution {
public int maxSubArray(int[] nums) {
if (nums.length == 0) return 0;
return helper(nums, 0, nums.length - 1);
}
public int helper(int[] nums, int left, int right) {
if (left >= right) return nums[left];
int mid = left + (right - left) / 2;
int lmax = helper(nums, left, mid - 1);
int rmax = helper(nums, mid + 1, right);
int mmax = nums[mid], t = mmax;
for (int i = mid - 1; i >= left; --i) {
t += nums[i];
mmax = Math.max(mmax, t);
}
t = mmax;
for (int i = mid + 1; i <= right; ++i) {
t += nums[i];
mmax = Math.max(mmax, t);
}
return Math.max(mmax, Math.max(lmax, rmax));
}
}
Github 同步地址:
https://github.com/grandyang/leetcode/issues/53
类似题目:
Best Time to Buy and Sell Stock
Longest Turbulent Subarray
参考资料:
https://leetcode.com/problems/maximum-subarray/
https://leetcode.com/problems/maximum-subarray/discuss/20211/Accepted-O(n)-solution-in-java
https://leetcode.com/problems/maximum-subarray/discuss/20193/DP-solution-and-some-thoughts
LeetCode All in One 题目讲解汇总(持续更新中...)
[LeetCode] Maximum Subarray 最大子数组的更多相关文章
- [LeetCode] 53. Maximum Subarray 最大子数组
Given an integer array nums, find the contiguous subarray (containing at least one number) which has ...
- [leetcode]53. Maximum Subarray最大子数组和
Given an integer array nums, find the contiguous subarray (containing at least one number) which has ...
- [LeetCode] 53. Maximum Subarray 最大子数组 --动态规划+分治
Given an integer array nums, find the contiguous subarray (containing at least one number) which has ...
- [LintCode] Maximum Subarray 最大子数组
Given an array of integers, find a contiguous subarray which has the largest sum. Notice The subarra ...
- [Leetcode] maximun subarray 最大子数组
Find the contiguous subarray within an array (containing at least one number) which has the largest ...
- 【LeetCode每天一题】Maximum Subarray(最大子数组)
Given an integer array nums, find the contiguous subarray (containing at least one number) which has ...
- Maximum Subarray(最大子数组)
Find the contiguous subarray within an array (containing at least one number) which has the largest ...
- 【LeetCode】53. Maximum Subarray 最大子序和 解题报告(Python & C++ & Java)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 暴力解法 动态规划 日期 题目地址: https:/ ...
- LEETCODE —— Maximum Subarray [一维DP]
Maximum Subarray Find the contiguous subarray within an array (containing at least one number) which ...
随机推荐
- scikit-learn一般实例之六:构建评估器之前进行缺失值填充
本例将会展示对确实值进行填充能比简单的对样例中缺失值进行简单的丢弃能获得更好的结果.填充不一定能提升预测精度,所以请通过交叉验证进行检验.有时删除有缺失值的记录或使用标记符号会更有效. 缺失值可以被替 ...
- linux sudo 命令
简单的说,sudo 是一种权限管理机制,管理员可以授权于一些普通用户去执行一些 root 执行的操作,而不需要知道 root 的密码.严谨些说,sudo 允许一个已授权用户以超级用户或者其它用户的角色 ...
- angularjs和ajax的结合使用 (二)
今天我们来继续丰富上次的例子.我们来搞些 稍微复杂点的应用. 首先我们来加一个全选 的功能. 上一篇的例子里我们看到 分页时载入的是我们通过linq 查询自定义列 然后构建的匿名类 .使用这种EF框架 ...
- c# socket
好久没有写CS端代码,今天有空复习一下SOCKET. 功能说明: 1.服务端向客户端发送信息 2.客户端向服务端发送信息 效果如下图: 服务端代码: Socket serverSocket = new ...
- C#基础-MD5验证
一.前言 MD5验证主要用于更新文件功能方面,服务器告知客户端要下载哪些更新文件并提供给客户端其MD5值,客户端从服务器将更新文件下载到本地并计算下载文件的MD5值,将本地接收的MD5值与服务器提供的 ...
- bzoj2820--莫比乌斯反演
题目大意: 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对. 推导: 设n<=m ans= = 由于gcd(i,j)= ...
- ctags
ctags是vim中非常好用的一个标签工具,你可以使用ctags跳转到函数定义的位置.下面总结一下如何安装和使用. 安装:sudo apt-get install ctags
- Three.js制作360度全景图
这是个基于three.js的插件,预览地址:戳这里 使用方法: 1.这个插件的用法很简单,引入如下2个js <script src="js/three.min.js"> ...
- 深入理解javascript选择器API系列第一篇——4种元素选择器
× 目录 [1]id属性 [2]标签名 [3]name属性[4]all 前面的话 说到最常见的DOM应用,恐怕就要数取得特定的某个或某组元素的引用了.DOM定义了许多方式来选取元素,包括getElem ...
- maven常用插件集
<?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://mave ...