605. Can Place Flowers
Suppose you have a long flowerbed in which some of the plots are planted and some are not. However, flowers cannot be planted in adjacent plots - they would compete for water and both would die.
Given a flowerbed (represented as an array containing 0 and 1, where 0 means empty and 1 means not empty), and a number \(n\), return if \(n\) new flowers can be planted in it without violating the no-adjacent-flowers rule.
Example 1:
Input: flowerbed = [1,0,0,0,1], n = 1
Output: True
Example 2:
Input: flowerbed = [1,0,0,0,1], n = 2
Output: False
Note:
- The input array won't violate no-adjacent-flowers rule.
- The input array size is in the range of [1, 20000].
- \(n\) is a non-negative integer which won't exceed the input array size.
自己代码:
\(n\leq3\) 时, 情况都列出来;
\(n>3\) 时, 那点若为首点 i == 0 && A[i] == 0 && A[1] == 0
,则count+1,且将A[0]=1, 否则那点若为尾点i == (n - 1) && A[i] == 0 && A[i - 1] == 0
,则count+1,且将A[n-1]=1,否则的话,这个点既不是首也不是尾巴,就可以放心的看这个点和前一个点以及后一个点是否全为0,A[i] == 0 && A[i - 1] == 0 && A[i + 1] == 0
,若是则count+1,且A[i]=1.
我这个逻辑稍显复杂,较难控制.
编写这个用了多久怎么能和你说呢!
我用了足足1分钟! ^^
\(O(n)\) time, \(O(1)\) extra space.
bool canPlaceFlowers(vector<int>& A, int k) {
int i, count = 0, n = A.size();
if (n <= 3) {
if (n == 1 && A[0] == 0) count = 1;
if (n == 1 && A[0] == 1) count = 0;
if (n == 2 && A[0] == 0 && A[1] == 0) count = 1;
if ((n == 2 && A[0] == 1 && A[1] == 0) || (n == 2 && A[0] == 0 && A[1] == 1)) count = 0;
if (n == 3 && A[0] == 0 && A[1] == 0 && A[2] == 0) count = 2;
if (n == 3 && A[0] == 0 && A[1] == 0 && A[2] == 1) count = 1;
if (n == 3 && A[0] == 1 && A[1] == 0 && A[2] == 0) count = 1;
return k <= count ? true : false;
}
else {
for (i = 0; i < n; i++) {
if (i == 0 && A[i] == 0 && A[1] == 0) {A[i] = 1; count++;}
else if (i == (n - 1) && A[i] == 0 && A[i - 1] == 0) {A[i] = 1; count++;}
else if (A[i] == 0 && A[i - 1] == 0 && A[i + 1] == 0) {A[i] = 1; count++;}
}
return k <= count ? true : false;
}
}
再看看人家的,妈的过分吧,是人脑袋吗,还有点正常人的思维吗,想杀人!
\(O(n)\) time, \(O(1)\) extra space.
bool canPlaceFlowers(vector<int>& A, int n) {
A.insert(A.begin(), 0);
A.push_back(0);
for (int i = 1; i < A.size() - 1; ++i){
if (A[i - 1] + A[i] + A[i + 1] == 0){
--n;
++i;
}
}
return n <= 0;
}
605. Can Place Flowers的更多相关文章
- 605. Can Place Flowers【easy】
605. Can Place Flowers[easy] Suppose you have a long flowerbed in which some of the plots are plante ...
- 【Leetcode_easy】605. Can Place Flowers
problem 605. Can Place Flowers 题意: solution1: 先通过简单的例子(比如000)发现,通过计算连续0的个数,然后直接算出能放花的个数,就必须要对边界进行处理, ...
- 605. Can Place Flowers种花问题【leetcode】
Suppose you have a long flowerbed in which some of the plots are planted and some are not. However, ...
- LeetCode 605. Can Place Flowers (可以种花)
Suppose you have a long flowerbed in which some of the plots are planted and some are not. However, ...
- 605. Can Place Flowers零一间隔种花
[抄题]: Suppose you have a long flowerbed in which some of the plots are planted and some are not. How ...
- 【Leetcode】605. Can Place Flowers
Description Suppose you have a long flowerbed in which some of the plots are planted and some are no ...
- 【LeetCode】605. Can Place Flowers 解题报告(Python & C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 解题方法 贪婪算法 日期 题目地址:https://leetcode.c ...
- LeetCode 605. 种花问题(Can Place Flowers) 6
605. 种花问题 605. Can Place Flowers 题目描述 假设你有一个很长的花坛,一部分地块种植了花,另一部分却没有.可是,花卉不能种植在相邻的地块上,它们会争夺水源,两者都会死去. ...
- LeetCode(605,581,566)
LeetCode(605,581,566) 摘要:605盲改通过:581开始思路错误,后利用IDE修改(多重循环跳出方法):566用C语言时需要动态内存分配,并且入口参数未能完全理解,转用C++. 6 ...
随机推荐
- gradle入门(1-2)gradle的依赖管理
Gradle支持以下仓库格式: Ivy仓库 Maven仓库 Flat directory仓库 一.添加仓库 1.添加Ivy仓库 1.1.通过URL地址添加一个Ivy仓库 我们可以将以下代码片段加入到b ...
- NHibernate优点和缺点:
NHibernate优点: 1.完全的ORM框架. NHibernate对数据库结构提供了较为完整的封装,它将数据库模式映射为较完全的对象模型,支持封装,继续机制,功能较强大,比一般的ORM灵活性高. ...
- mysql 查询select语句汇总
数据准备: 创建表: create table students( id int unsigned primary key auto_increment not null, name varchar( ...
- PyQt5--基础篇:用eric6工具实现三级联动效果
今天给大家介绍下python gui界面的三级联动效果,我们用工具eric6来实现,先看下效果图. 首先我们先创建项目linkage,再新建窗体进入到Qt设计师工具开始设计界面,完成后保存并退出. 在 ...
- Tensorflow会话Session
转载自: http://blog.csdn.net/Hanging_Gardens/article/details/72784392 https://www.cnblogs.com/hypnus-ly ...
- digest-MD5认证
digest-MD5认证机制是基于MD5算法的LINUX安全机制认证. 会比较用户端传送的杂凑值与使用者密码的杂凑值,以认证用户端. 但由于此机制必须读取使用者密码,因此,所有想透过digest-MD ...
- mysql数据库--explain(查询表是否走索引)各个字段含义
1.1 id列 数字越大越先执行,如果说数字一样大,那么就从上往下依次执行,id列为null的就表是这是一个结果集,不需要使用它来进行查询. 1.2 select_type列 常见的有: ◆ simp ...
- Temple Build~dp(01背包的变形)
The Dwarves of Middle Earth are renowned for their delving and smithy ability, but they are also mas ...
- NC二次开发常用的表
常用的表: 收费清单:pr_cr_receivables 会计月份: bd_accperiodmonth 20180416
- kafka知识体系-kafka设计和原理分析-kafka leader选举
kafka leader选举 一条消息只有被ISR中的所有follower都从leader复制过去才会被认为已提交.这样就避免了部分数据被写进了leader,还没来得及被任何follower复制就宕机 ...