tf.nn.conv2d 和 tf.nn.max_pool 中 padding 分别为 'VALID' 和 'SAME' 的直觉上的经验和测试代码
这个地方一开始是迷糊的,写代码做比较分析,总结出直觉上的经验.
某人若想看精准的解释,移步这个网址(http://blog.csdn.net/fireflychh/article/details/73743849),但我觉得直觉上的经验更有用,如下:
直觉上的经验:
- 一件确定的事: padding 无论取 'SAME' 还是取 'VALID', 它在 conv2d 和 max_pool 上的表现是一致的;
- padding = 'SAME' 时,输出并不一定和原图size一致,但会保证覆盖原图所有像素,不会舍弃边上的莫些元素;
- padding = 'VALID' 时,输出的size总比原图的size小,有时不会覆盖原图所有元素(既,可能舍弃边上的某些元素).
# -*- coding: utf-8 -*-
import tensorflow as tf
import numpy as np
def pooling_show():
a = tf.Variable(tf.random_normal(X))
pooling = tf.nn.max_pool(a, pooling_filter, pooling_strides, padding=pad)
# VALID (1, 2, 2, 7)
# SAME (1, 3, 3, 7)
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
print 'image: '
image = sess.run(a)
print image.shape
print 'pooling result: '
res = sess.run(pooling)
print res.shape
def conv2d_padding_show():
# [1, 13, 13, 2] ---> [m, height, width, channel]
input = tf.Variable(tf.random_normal(X))
# [6, 6, 2, 7] ---> [height, width, prev_channel, output_channel]
filter = tf.Variable(tf.random_normal(conv2d_filter))
op = tf.nn.conv2d(input, filter, strides=conv2d_strides, padding=pad)
# VALID (1, 2, 2, 7)
# SAME (1, 3, 3, 7)
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
print 'image: '
image = sess.run(input)
print image.shape
print 'result: '
res = sess.run(op)
print res.shape
pad = 'VALID'
# X ---> [m, height, width, channel]
# X = [1, 13, 13, 7]
X = [1, 8, 8, 3]
# ---> [1, f, f, 1]
# pooling_filter = [1, 6, 6, 1]
pooling_filter = [1, 2, 2, 1]
# ---> [1, s, s, 1]
# pooling_strides = [1, 5, 5, 1]
pooling_strides = [1, 2, 2, 1]
# ---> [height, width, prev_channel, output_channel]
# conv2d_filter = [6, 6, 7, 7]
conv2d_filter = [2, 2, 3, 3]
# ---> [1, s, s, 1]
# conv2d_strides = [1, 5, 5, 1]
conv2d_strides = [1, 2, 2, 1]
# 自己改改 X, fileter, strides 的值,配合直觉经验,会有更好的理解
conv2d_padding_show()
pooling_show()
tf.nn.conv2d 和 tf.nn.max_pool 中 padding 分别为 'VALID' 和 'SAME' 的直觉上的经验和测试代码的更多相关文章
- Android网络传输中必用的两个加密算法:MD5 和 RSA (附java完成测试代码)
MD5和RSA是网络传输中最常用的两个算法,了解这两个算法原理后就能大致知道加密是怎么一回事了.但这两种算法使用环境有差异,刚好互补. 一.MD5算法 首先MD5是不可逆的,只能加密而不能解密.比如明 ...
- Pytorch中nn.Conv2d的用法
Pytorch中nn.Conv2d的用法 nn.Conv2d是二维卷积方法,相对应的还有一维卷积方法nn.Conv1d,常用于文本数据的处理,而nn.Conv2d一般用于二维图像. 先看一下接口定义: ...
- 关于torch.nn.Conv2d的笔记
先看一下CLASS有哪些参数: torch.nn.Conv2d( in_channels, out_channels, kernel_size, stride=1, padding=0, dilati ...
- PyTorch : torch.nn.xxx 和 torch.nn.functional.xxx
PyTorch : torch.nn.xxx 和 torch.nn.functional.xxx 在写 PyTorch 代码时,我们会发现一些功能重复的操作,比如卷积.激活.池化等操作.这些操作分别可 ...
- 深度学习原理与框架-Tensorflow卷积神经网络-卷积神经网络mnist分类 1.tf.nn.conv2d(卷积操作) 2.tf.nn.max_pool(最大池化操作) 3.tf.nn.dropout(执行dropout操作) 4.tf.nn.softmax_cross_entropy_with_logits(交叉熵损失) 5.tf.truncated_normal(两个标准差内的正态分布)
1. tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME') # 对数据进行卷积操作 参数说明:x表示输入数据,w表示卷积核, stride ...
- tf.nn.conv2d函数和tf.nn.max_pool函数介绍
tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None) 介绍参数: input:指卷积需要输入的 ...
- TF-卷积函数 tf.nn.conv2d 介绍
转自 http://www.cnblogs.com/welhzh/p/6607581.html 下面是这位博主自己的翻译加上测试心得 tf.nn.conv2d是TensorFlow里面实现卷积的函数, ...
- tf.nn.conv2d。卷积函数
tf.nn.conv2d是TensorFlow里面实现卷积的函数,参考文档对它的介绍并不是很详细,实际上这是搭建卷积神经网络比较核心的一个方法,非常重要 tf.nn.conv2d(input, fil ...
- tf.nn.conv2d
tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None) input: 指需要做卷积的输入图像,它 ...
随机推荐
- js常用的数组方法
1.创建数组的基本方法: 1.1 空数组 var obj=new Array(); 1.2 指定长度数组 var obj=new Array(size); ...
- 简单聊聊java中的final关键字
简单聊聊java中的final关键字 日常代码中,final关键字也算常用的.其主要应用在三个方面: 1)修饰类(暂时见过,但是还没用过); 2)修饰方法(见过,没写过); 3)修饰数据. 那么,我们 ...
- hdu1203 I NEED A OFFER!---概率DP(01背包)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1203 题目大意:Speakless很早就想出国,现在他已经考完了所有需要的考试,准备了所有要准备的材 ...
- innerHTML与innerText的区别
innerHTML获取元素的HTML内容,和设计元素的HTML内容(HTML标签会被解析)例如:ele.innerHTML="<strong>我会被解释加粗</strong ...
- 我花了 8 小时,"掌握"了一下 Flutter | Flutter 中文站上线
Hi,大家好,我是承香墨影! 距离 Google 在 2018 世界移动大会上发布 Flutter 的 Beta 版本,Flutter 是 Google 用以帮助开发者在 Android 和 iOS ...
- JavaScript, 函数是实现异步的基础
昨天一朋友和我聊到JS中的异步和同步, 后来从异步和同步的问题中得出了函数的另一面, 觉得挺不错, 特此分享一下 ==== 追梦子: 聊天是同步还是异步 小A: 异步 小A: 和你聊还可以和别人聊 追 ...
- [LeetCode] Binary Tree Tilt 二叉树的坡度
Given a binary tree, return the tilt of the whole tree. The tilt of a tree node is defined as the ab ...
- Unity3D UGUI 自动调节大小
可添加以下组件 组件包含的两个枚举参数,可以自行设定适应方式. 例如一个Text UI元素,当文字过多的时候他不会自动增加高度而导致文字不能完全显示,这时候就可以挂载这个组件,如上图设置参数,就可以自 ...
- Ubantu16.04系统优化
系统清理篇 系统更新 安装完系统之后,需要更新一些补丁.Ctrl+Alt+T调出终端,执行一下代码: sudo apt-get update sudo apt-get upgrade 卸载libreO ...
- 出错信息:Incorrect string value: '\xE4\xBD\xA0\xE5\xA5\xBD' for column 'username'
出错信息: java.sql.SQLException: Incorrect string value: '\xE4\xBD\xA0\xE5\xA5\xBD' for column 'username ...