一、定义

  1. UserCF:推荐那些和他有共同兴趣爱好的用户喜欢的物品
  2. ItemCF:推荐那些和他之前喜欢的物品类似的物品

    根据用户推荐重点是反应和用户兴趣相似的小群体的热点,根据物品推荐着重与用户过去的历史兴趣,即:
  • UserCF是某个群体内的物品热门程度
  • ItemCF是反应本人的兴趣爱好,更加个性化

二、新闻类网站采用UserCF的原因:

  1. 用户大都喜欢热门新闻,特别细粒度的个性化可忽略不计
  2. 个性化新闻推荐更强调热点,热门程度和实效性是推荐的重点,个性化重要性则可降低
  3. ItemCF需要维护一张物品相关度的表,当物品量更新速度太快时,此表的维护在技术上有难度。新闻类网站对于新用户可直接推荐热门新闻即可
  4. 对于电商、音乐、图书等网站而言,ItemCF的优势更大:
  • 用户的兴趣比较固定和持久;
  • 不需要太过考虑流行度,只需要帮用户发现他研究领域相关物品即可

    5.技术角度考量
  • UserCF需要维护一个用户相似度矩阵
  • ItemCF需要维护一个物品相似度矩阵

三、优缺点对比

项目 UserCF ItemCF
性能 适用于用户较少的场合,如果用户过多,计算用户相似度矩阵的代价交大 适用于物品数明显小于用户数的场合,如果物品很多,计算物品相似度矩阵的代价交大
领域 实效性要求高,用户个性化兴趣要求不高 长尾物品丰富,用户个性化需求强烈
实时性 用户有新行为,不一定需要推荐结果立即变化 用户有新行为,一定会导致推荐结果的实时变化
冷启动 在新用户对少的物品产生行为后,不能立即对他进行个性化推荐,因为用户相似度是离线计算的 新物品上线后一段时间,一旦有用户对物品产生行为,就可以将新物品推荐给其他用户 新用户只要对一个物品产生行为,就能推荐相关物品给他,但无法在不离线更新物品相似度表的情况下将新物品推荐给用户
推荐理由 很难提供 可以根据用户历史行为归纳推荐理由

推荐算法之用户推荐(UserCF)和物品推荐(ItemCF)对比的更多相关文章

  1. 【笔记3】用pandas实现矩阵数据格式的推荐算法 (基于用户的协同)

    原书作者使用字典dict实现推荐算法,并且惊叹于18行代码实现了向量的余弦夹角公式. 我用pandas实现相同的公式只要3行. 特别说明:本篇笔记是针对矩阵数据,下篇笔记是针对条目数据. ''' 基于 ...

  2. 【笔记4】用pandas实现条目数据格式的推荐算法 (基于用户的协同)

    ''' 基于用户的协同推荐 条目数据 ''' import pandas as pd from io import StringIO import json #数据类型一:条目(用户.商品.打分)(避 ...

  3. 推荐算法——距离算法

    本文内容 用户评分表 曼哈顿(Manhattan)距离 欧式(Euclidean)距离 余弦相似度(cos simliarity) 推荐算法以及数据挖掘算法,计算"距离"是必须的~ ...

  4. (转) 基于MapReduce的ItemBase推荐算法的共现矩阵实现(一)

    转自:http://zengzhaozheng.blog.51cto.com/8219051/1557054 一.概述 这2个月为公司数据挖掘系统做一些根据用户标签情况对用户的相似度进行评估,其中涉及 ...

  5. Mahout推荐算法基础

    转载自(http://www.geek521.com/?p=1423) Mahout推荐算法分为以下几大类 GenericUserBasedRecommender 算法: 1.基于用户的相似度 2.相 ...

  6. 基于MapReduce的(用户、物品、内容)的协同过滤推荐算法

    1.基于用户的协同过滤推荐算法 利用相似度矩阵*评分矩阵得到推荐列表 已经推荐过的置零 2.基于物品的协同过滤推荐算法 3.基于内容的推荐 算法思想:给用户推荐和他们之前喜欢的物品在内容上相似的物品 ...

  7. 基于用户的协同过滤的电影推荐算法(tensorflow)

    数据集: https://grouplens.org/datasets/movielens/ ml-latest-small 协同过滤算法理论基础 https://blog.csdn.net/u012 ...

  8. 推荐召回--基于用户的协同过滤UserCF

    目录 1. 前言 2. 原理 3. 数据及相似度计算 4. 根据相似度计算结果 5. 相关问题 5.1 如何提炼用户日志数据? 5.2 用户相似度计算很耗时,有什么好的方法? 5.3 有哪些改进措施? ...

  9. 【笔记6】用pandas实现条目数据格式的推荐算法 (基于物品的协同)

    ''' 基于物品的协同推荐 矩阵数据 说明: 1.修正的余弦相似度是一种基于模型的协同过滤算法.我们前面提过,这种算法的优势之 一是扩展性好,对于大数据量而言,运算速度快.占用内存少. 2.用户的评价 ...

随机推荐

  1. 开源博客系统使用springmvc

    https://github.com/Zephery/newblog http://www.wenzhihuai.com/index.html

  2. read运行

    #_*_ coding:utf-8 _*_ from sys import argv from os.path import exists   script, from_file, to_file = ...

  3. 浮动和BFC的学习整理转述

    前言:这是笔者学习之后自己的理解与整理.如果有错误或者疑问的地方,请大家指正,我会持续更新! 文档流的概念:html中block块元素默认是单独占据一行的,从上到下排列,也就是我们说的文档流; 脱离文 ...

  4. 【SQL.基础构建-第二节(2/4)】

    --      Tips:查询基础 --一.SELECT 语句基础-- 1.查询指定列:SELECT 关键字--语法:--SELECT <列名>, ...     -- 希望查询列的名称- ...

  5. 谈谈App的混合开发

    一.概念 App混合开发,顾名思义,是一个开发模式,指的是开发一个App一部分功能用native构建一部分功能用html5构建,英文名叫:Hybrid App. 在几年前就已经出现了App混合开发模式 ...

  6. 031718-js变量、数据类型、运算符

    1.关键字.标识符.变量(是一个名称,最好用字母开头,对大小写敏感).常量 (是有数据类型的一个值) 变量: ①定义并赋值 ②使用   2.数据类型:数字  字符串  布尔  null  undefi ...

  7. Efficient&Elegant:Java程序员入门Cpp

    最近项目急需C++ 的知识结构,虽说我有过快速学习很多新语言的经验,但对于C++ 老特工我还需保持敬畏(内容太多),本文会从一个Java程序员的角度,制定高效学习路线快速入门C++ . Java是为了 ...

  8. javaApplication中如何使用log4j

  9. Junit简单配置

    Junit简单配置的步骤如下: 1.在WEB-INF目录下的lib里面放一个junit包,我用的是junit-4.9.jar: 2.选定要测试的类,右键单击该类,新建一个Junit Test Case ...

  10. bzoj4946 Noi2017 蔬菜

    题目描述 小 N 是蔬菜仓库的管理员,负责设计蔬菜的销售方案. 在蔬菜仓库中,共存放有nn 种蔬菜,小NN 需要根据不同蔬菜的特性,综合考虑各方面因素,设计合理的销售方案,以获得最多的收益. 在计算销 ...