算法题目

查找斐波纳契数列中第 N 个数。

所谓的斐波纳契数列是指:

* 前2个数是 0 和 1 。

* 第 i 个数是第 i-1 个数和第i-2 个数的和。

斐波纳契数列的前10个数字是:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34 …

分析

斐波那契数列满足公式f(n) = f(n-1) + f(n-2),n > 0。这里我们的第一想法是使用递归,可是直接翻译公式出来的递归调用是这样的:

int fib(int n) {
if (n == 1) {
return 0;
}
if (n == 2){
return 1;
} return fib(n - 1) + fib(n - 2);
}

可是这个函数的事件复杂度恰好是最糟糕的指数级。怎么来证明它是指数级呢?

你可以先用一些测试数来测试一下这个方法:

当n = 40时,大概就需要0.5秒才能计算出来;

当n 为50时,需要等很久才能计算出实际的值。

下面来推导它的时间复杂度。

对于斐波那契数,有定理 :当n >= 0时,Fn < (5/3)n

首先使用归纳法来证明。对于基准情形,F1 = 0 < 5/3,F2 = 1 < 5/3。

然后假设i = 1,2,3,…,n 成立;这就是归纳假设。那么我们只需要证明出Fn+1 < (5/3)n+1 即可。

根据公式我们可以得出Fn+1 = Fn + Fn-1

推到过程如下:

Fn+1 < (5/3)n + (5/3)n-1

Fn+1 < (3/5)(5/3)n+1 + (3/5)2(5/3)n+1

Fn+1 < (24/25)(5/3)n+1 < (5/3)n+1

得证 Fn+1 < (5/3)n+1

同样的证明过程,可以证明出当n > 4时, Fn > (3/2)n

而T(n) = T(n-1) + T(n-2) + 3。

T(n) >= fib(n) >= (3/2)n

因此这个函数的运行时间是以指数的速度增长。

可能有点不同的是,有的斐波那契数列是从1,1,2,3,…. 开始,所以有些微的差别。

这只是对级数做了一次平移。我们可以找一些方便证明的情况来证明。

更优解法

其实上面的递归违反了递归的合成效益法则,才导致了运行时间的指数级增长。

递归的四条基本准则:

1、基准情形。必须有总有某些基准情形,它无须递归就能解出。

2、不断推进。对于那些需要递归求解的情形,每一次递归调用都必须要使求解状况朝接近基准情形的方向推进。

3、设计法则。假设所有的递归调用都能运行。

4、合成效益法则。在求解一个问题的同一示例时,切勿在不同的递归调用中做重复性的工作。

我们可以利用一个简单的for 循环来求解第N个斐波那契数。

int fibonacci(int n) {
if (n == 1) {
return 0;
} if (n == 2) {
return 1;
} int a = 0;
int b = 1;
int c = 0;
for (int i = 3; i < n + 1; i++) {
c = a + b;
a = b;
b = c;
}
return c;
}

使用两个变量分别保存f(n-1) 和f (n-2),然后从基准情况开始往第 n 个数推进。

改进后的函数时间复杂度是O(n),运行时间大概是 (3n - 1)大大减少了运行时间。

算法之路(三)----查找斐波纳契数列中第 N 个数的更多相关文章

  1. Java算法求最大最小值,冒泡排序,斐波纳契数列一些经典算法<不断更新中>

    清明在家,无聊,把一些经典的算法总结了一下. 一.求最大,最小值 Scanner input=new Scanner(System.in); int[] a={21,31,4,2,766,345,2, ...

  2. lintcode:Fibonacci 斐波纳契数列

    题目: 斐波纳契数列 查找斐波纳契数列中第 N 个数. 所谓的斐波纳契数列是指: 前2个数是 0 和 1 . 第 i 个数是第 i-1 个数和第i-2 个数的和. 斐波纳契数列的前10个数字是: 0, ...

  3. LintCode 斐波纳契数列

    查找斐波纳契数列中第 N 个数. 所谓的斐波纳契数列是指: 前2个数是 0 和 1 . 第 i 个数是第 i-1 个数和第i-2 个数的和. 斐波纳契数列的前10个数字是: 0, 1, 1, 2, 3 ...

  4. Java算法求最大最小值,倒序,冒泡排序,斐波纳契数列,日历一些经典算法

    一,求最大,最小值 int[] a={21,31,4,2,766,345,2,34}; //这里防止数组中有负数,所以初始化的时候给的数组中的第一个数. int max=a[0]; int min=a ...

  5. java斐波纳契数列

    //斐波纳契数列,又称黄金分割数列,指的是这样一个数列:1.1.2.3.5.8.13.21.-- 这个数列从第三项开始,每一项都等于前两项之和. public class DiGui { public ...

  6. HDU 4639 Hehe(字符串处理,斐波纳契数列,找规律)

    题目 //每次for循环的时候总是会忘记最后一段,真是白痴.... //连续的he的个数 种数 //0 1 //1 1 //2 2 //3 3 //4 5 //5 8 //…… …… //斐波纳契数列 ...

  7. 用PHP迭代器来实现一个斐波纳契数列(转)

    斐波纳契数列通常做法是用递归实现,当然还有其它的方法.这里现学现卖,用PHP的迭代器来实现一个斐波纳契数列,几乎没有什么难度,只是把类里的next()方法重写了一次.注释已经写到代码中,也是相当好理解 ...

  8. 10、end关键字和Fibonacci series: 斐波纳契数列

    # Fibonacci series: 斐波纳契数列 # 两个元素的总和确定了下一个数 a, b = 0, 1 #复合赋值表达式,a,b同时赋值0和1 while b < 10: print(b ...

  9. HDU 5914 Triangle 斐波纳契数列 && 二进制切金条

    HDU5914 题目链接 题意:有n根长度从1到n的木棒,问最少拿走多少根,使得剩下的木棒无论怎样都不能构成三角形. 题解:斐波纳契数列,a+b=c恰好不能构成三角形,暴力就好,推一下也可以. #in ...

随机推荐

  1. R语言-ggplot初级

    ggplot2简介: 在2005年开始出现,吸取了基础绘图系统和lattice绘图系统的优点,并利用一个强大的模型来对其进行改进,这一模型基于之前所述的一系列准则, 能够创建任意类型的统计图形 1.导 ...

  2. 最新的Windows环境搭建zeroMQ并使用java代码运行zeromq详细教程

    最近项目要用zeromq,linux上很好配置使用,但是windows上配置与使用没有找到合适的解决方案,看的很头疼,这里自己总结下供大家参考 准备工作: 1.libzmq下载地址:https://g ...

  3. 数据结构与算法 —— 链表linked list(04)

    我们在上篇文章里面提到了链表的翻转,给定一个链表,对每两个相邻的节点作交换,并返回头节点,今天的这道题是它的升级版,如下: k个一组翻转链表 给出一个链表,每 k 个节点一组进行翻转,并返回翻转后的链 ...

  4. bootStrap Table 如何使用

    最近在使用bootStrap Table 的表格功能有一些自己的理解写下来分享一下主要用的是一个bootStrapTable 和 jquery 的混合开发 具体怎样引入bootStrap Table ...

  5. 关于Go 的 Interface

    最近在用Go语言写程序, 其中遇到一个场景:写了一个接口,3个实现接口的struct. 另外一个struct包含此接口,根据构造函数赋予不同的结构实现. 一开始struct里写的是接口的地址,但是在创 ...

  6. 各种电脑进入BIOS快捷键

    组装机主板 品牌笔记本 品牌台式机 主板品牌 启动按键 笔记本品牌 启动按键 台式机品牌 启动按键 华硕主板 F8 联想笔记本 F12 联想台式机 F12 技嘉主板 F12 宏基笔记本 F12 惠普台 ...

  7. [HAOI2012]道路

    题目描述 C国有n座城市,城市之间通过m条[b]单向[/b]道路连接.一条路径被称为最短路,当且仅当不存在从 它的起点到终点的另外一条路径总长度比它小.两条最短路不同,当且仅当它们包含的道路序列不同. ...

  8. NOIWC2018 游记

    day1 上午是自习,做了一些杂题,看了一下ppt,中午准备了一下行李,就出发了,提前了一个小时,谁知道被坑爹导航弄得居然到晚了一点 当走到这里的时候我愣住了 纠结了一分钟,直到有个boy走了进去,我 ...

  9. ●POJ 2007 Scrambled Polygon

    题链: http://poj.org/problem?id=2007 题解: 计算几何,极角排序 按样例来说,应该就是要把凸包上的i点按 第三像限-第四像限-第一像限-第二像限 的顺序输出. 按 叉积 ...

  10. [BZOJ]2194: 快速傅立叶之二

    题目大意:给定序列a,b,求序列c满足c[k]=sigma(a[i]*b[i-k]) (k<=i<n).(n<=10^5) 思路:观察发现就是普通的卷积反一反(翻转ab其中一个后做卷 ...