【BZOJ1013】球形空间产生器(高斯消元)
【BZOJ1013】球形空间产生器(高斯消元)
题面
Description
有一个球形空间产生器能够在n维空间中产生一个坚硬的球体。现在,你被困在了这个n维球体中,你只知道球
面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁这个球形空间产生器。
Input
第一行是一个整数n(1<=N=10)。接下来的n+1行,每行有n个实数,表示球面上一点的n维坐标。每一个实数精确到小数点
后6位,且其绝对值都不超过20000。
Output
有且只有一行,依次给出球心的n维坐标(n个实数),两个实数之间用一个空格隔开。每个实数精确到小数点
后3位。数据保证有解。你的答案必须和标准输出一模一样才能够得分。
Sample Input
2
0.0 0.0
-1.0 1.0
1.0 0.0
Sample Output
0.500 1.500
题解
有\(n\)个未知数
却有\(n+1\)个方程
但是,把所有的式子产开后,发现有平方项
所以,随便选一个方程,和其他的所有方程形成等式
消去平方项
然后就是\(n\)个未知数\(n\)个方程
高斯消元即可
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define MAX 50
double g[MAX][MAX],a[MAX][MAX],ans[MAX];
double ss[MAX];
int n;
void Solve()
{
for(int i=1;i<=n;++i)
{
for(int j=i+1;j<=n;++j)
{
double tt=g[j][i]/g[i][i];
for(int k=1;k<=n+1;++k)
g[j][k]-=g[i][k]*tt;
}
}
ans[n]=g[n][n+1]/g[n][n];
for(int i=n-1;i>=1;--i)
{
for(int j=i+1;j<=n;++j)
g[i][n+1]-=g[i][j]*ans[j];
ans[i]=g[i][n+1]/g[i][i];
}
}
int main()
{
scanf("%d",&n);
for(int i=0;i<=n;++i)
for(int j=1;j<=n;++j)
scanf("%lf",&a[i][j]),ss[i]+=a[i][j]*a[i][j];
for(int i=1;i<=n;++i)
{
for(int j=1;j<=n;++j)
g[i][j]=2*(a[i][j]-a[0][j]);
g[i][n+1]=ss[i]-ss[0];
}
Solve();
for(int i=1;i<n;++i)
printf("%.3lf ",ans[i]);
printf("%.3lf\n",ans[n]);
return 0;
}
【BZOJ1013】球形空间产生器(高斯消元)的更多相关文章
- 【BZOJ1013】【JSOI2008】球形空间产生器 高斯消元
题目描述 有一个\(n\)维空间中的球,告诉你球面上\(n+1\)个点的坐标,求球心的坐标. \(n\leq 10\) 题解 设\(a_{i,j}\)为第\(i\)个点的第\(j\)维坐标,\(i=0 ...
- LG4035/BZOJ1013 「JSOI2008」球形空间产生器 高斯消元
问题描述 LG4035 BZOJ1013 题解 设答案为\((p_1,p_2,p_3,...,p_n)\) 因为是一个球体,令其半径为\(r\),则有 \[\sum_{i=1}^{n}{(a_i-p_ ...
- BZOJ.1013.[JSOI2008]球形空间产生器(高斯消元)
题目链接 HDU3571 //824kb 40ms //HDU3571弱化版 跟那个一比这个太水了,练模板吧. //列出$n+1$个二次方程后两两相减,就都是一次方程了. #include <c ...
- BZOJ1013 JSOI2008 球形空间产生器sphere 【高斯消元】
BZOJ1013 JSOI2008 球形空间产生器sphere Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球面上n+1个点 ...
- BZOJ1013球形空间产生器sphere 高斯消元
@[高斯消元] Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球 ...
- [bzoj1013][JSOI2008][球形空间产生器sphere] (高斯消元)
Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧 ...
- 【BZOJ1013】【JSOI2008】球形空间产生器sphere(高斯消元)
1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 1600 Solved: 860[Submi ...
- BZOJ-1013 球形空间产生器sphere 高斯消元+数论推公式
1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec Memory Limit: 162 MB Submit: 3662 Solved: 1910 [Subm ...
- BZOJ1013 [JSOI2008]球形空间产生器sphere(高斯消元)
1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 4846 Solved: 2525[Subm ...
随机推荐
- win8 -telnet安装
控制面板->程序-> 启动或关闭windows功能->选择telnet服务器和telnet客户端->确定 为了安全起见,我们可以设置为手动器用telnet,右键计算机-> ...
- LeetCode - 492. Construct the Rectangle
For a web developer, it is very important to know how to design a web page's size. So, given a speci ...
- 【JavaWeb】c3p0连接池与MySQL
正文之前 在之前的文章讲到了传统的JDBC连接MySQL的方式,但是这样的方式在进行多个连接时,就显得效率低下,明显不如连接池的效率,所以我们这次来讲解一下JDBC连接池之一:c3p0 正文 1. 准 ...
- WPF项目学习.三
工具代码记录 版权声明:本文为博主初学经验,未经博主允许不得转载. 一.前言 记录在学习与制作WPF过程中遇到的解决方案. 分页控件的制作,邮件发送,日志代码,excel导入导出等代码的实现过程: 二 ...
- 彻底理解 Android 中的阴影
如果我们想创造更好的 Android App,我相信我们需要遵循 Material Design 的设计规范.一般而言,Material Design 是一个包含光线,材质和投影的三维环境.如果我们想 ...
- 用node.js搭建本地服务器
我的第一篇笔记来写写node.js,我对node.js的并不是很了解,基本的项目路径变换还是会的.原先我下载node.js就是我想学vue.js,后来因为工作的繁忙搁浅了我的计划.最近在学习phase ...
- eclipse中创建一个maven项目
1.什么是Maven Apache Maven 是一个项目管理和整合工具.基于工程对象模型(POM)的概念,通过一个中央信息管理模块,Maven 能够管理项目的构建.报告和文档. Maven工程结构和 ...
- HADOOP集群配置
http://wenku.baidu.com/view/92cbe435eefdc8d376ee32eb.html http://www.infoq.com/cn/articles/hadoop-co ...
- hi3531spi flash启动和bootrom启动的对比
a
- R语言︱函数使用技巧(循环、if族/for、switch、repeat、ifelse、stopifnot)
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 后续加更内容: 应用一:if族有哪些成员呢?- ...