【BZOJ1013】球形空间产生器(高斯消元)
【BZOJ1013】球形空间产生器(高斯消元)
题面
Description
有一个球形空间产生器能够在n维空间中产生一个坚硬的球体。现在,你被困在了这个n维球体中,你只知道球
面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁这个球形空间产生器。
Input
第一行是一个整数n(1<=N=10)。接下来的n+1行,每行有n个实数,表示球面上一点的n维坐标。每一个实数精确到小数点
后6位,且其绝对值都不超过20000。
Output
有且只有一行,依次给出球心的n维坐标(n个实数),两个实数之间用一个空格隔开。每个实数精确到小数点
后3位。数据保证有解。你的答案必须和标准输出一模一样才能够得分。
Sample Input
2
0.0 0.0
-1.0 1.0
1.0 0.0
Sample Output
0.500 1.500
题解
有\(n\)个未知数
却有\(n+1\)个方程
但是,把所有的式子产开后,发现有平方项
所以,随便选一个方程,和其他的所有方程形成等式
消去平方项
然后就是\(n\)个未知数\(n\)个方程
高斯消元即可
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define MAX 50
double g[MAX][MAX],a[MAX][MAX],ans[MAX];
double ss[MAX];
int n;
void Solve()
{
for(int i=1;i<=n;++i)
{
for(int j=i+1;j<=n;++j)
{
double tt=g[j][i]/g[i][i];
for(int k=1;k<=n+1;++k)
g[j][k]-=g[i][k]*tt;
}
}
ans[n]=g[n][n+1]/g[n][n];
for(int i=n-1;i>=1;--i)
{
for(int j=i+1;j<=n;++j)
g[i][n+1]-=g[i][j]*ans[j];
ans[i]=g[i][n+1]/g[i][i];
}
}
int main()
{
scanf("%d",&n);
for(int i=0;i<=n;++i)
for(int j=1;j<=n;++j)
scanf("%lf",&a[i][j]),ss[i]+=a[i][j]*a[i][j];
for(int i=1;i<=n;++i)
{
for(int j=1;j<=n;++j)
g[i][j]=2*(a[i][j]-a[0][j]);
g[i][n+1]=ss[i]-ss[0];
}
Solve();
for(int i=1;i<n;++i)
printf("%.3lf ",ans[i]);
printf("%.3lf\n",ans[n]);
return 0;
}
【BZOJ1013】球形空间产生器(高斯消元)的更多相关文章
- 【BZOJ1013】【JSOI2008】球形空间产生器 高斯消元
题目描述 有一个\(n\)维空间中的球,告诉你球面上\(n+1\)个点的坐标,求球心的坐标. \(n\leq 10\) 题解 设\(a_{i,j}\)为第\(i\)个点的第\(j\)维坐标,\(i=0 ...
- LG4035/BZOJ1013 「JSOI2008」球形空间产生器 高斯消元
问题描述 LG4035 BZOJ1013 题解 设答案为\((p_1,p_2,p_3,...,p_n)\) 因为是一个球体,令其半径为\(r\),则有 \[\sum_{i=1}^{n}{(a_i-p_ ...
- BZOJ.1013.[JSOI2008]球形空间产生器(高斯消元)
题目链接 HDU3571 //824kb 40ms //HDU3571弱化版 跟那个一比这个太水了,练模板吧. //列出$n+1$个二次方程后两两相减,就都是一次方程了. #include <c ...
- BZOJ1013 JSOI2008 球形空间产生器sphere 【高斯消元】
BZOJ1013 JSOI2008 球形空间产生器sphere Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球面上n+1个点 ...
- BZOJ1013球形空间产生器sphere 高斯消元
@[高斯消元] Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球 ...
- [bzoj1013][JSOI2008][球形空间产生器sphere] (高斯消元)
Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧 ...
- 【BZOJ1013】【JSOI2008】球形空间产生器sphere(高斯消元)
1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 1600 Solved: 860[Submi ...
- BZOJ-1013 球形空间产生器sphere 高斯消元+数论推公式
1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec Memory Limit: 162 MB Submit: 3662 Solved: 1910 [Subm ...
- BZOJ1013 [JSOI2008]球形空间产生器sphere(高斯消元)
1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 4846 Solved: 2525[Subm ...
随机推荐
- windows搭建web服务器
1.安装web管理工具 控制面板--->程序和功能--->打开或关闭功能 2.将internet信息服务中的所有选项全部勾上,并点击确定. 3.打开浏览器,输入http://localho ...
- [Uva10601]Cubes
[Uva10601]Cubes 标签: 置换 burnside引理 题意 给你12跟长度相同的小木棍,每个小木棍有一个颜色.统计他们能拼成多少种不同的立方体.旋转后相同的立方体认为是相同的. 题解 这 ...
- CodeForces 820C
题意略. 这道题目的出题者竟然被hack了!? 我的思路是:在游戏开始时,为了尽量少地用字母,我应该尽量选取计算机输出的前a个字母中已经使用过的字母.但是为了使电脑也尽量少用字母,我添加的这b个字母应 ...
- 基于MATLAB2016b图形化设计自动生成Verilog语言的积分模块及其应用
在电力电子变流器设备中,常常需要计算发电量,由于电力电子变流器设备一般是高频变流设备,所以发电量的计算几乎时实时功率的积分,此时就会用到一个积分模块.发电量计算的公式如下:Q=∫P. FPGA由于其并 ...
- cmd命令报4048错误
解决方法: win10系统:快捷键win+x,找到命令提示符(管理员),打开再下载相应的依赖包. win7/8:打开开始,输入命令提示符,找到管理员权限的命令提示符,打开再下载相应的依赖包. 提示:如 ...
- 中小研发团队架构实践之微服务MSA
一.MSA简介 1.1.MSA是什么 微服务架构MSA是Microservice Architecture的简称,它是一种架构模式,它提倡将单一应用程序划分成一组小的服务,服务之间互相通讯.互相配合, ...
- centos7 mongodb 3.4 yum 安装
3.4 vi /etc/yum.repos.d/mongodb-3.4.repo [mongodb-org-3.4] name=MongoDB Repository baseurl=https:/ ...
- SQL Server查询中对于单列数据','分割的数据进行的拆分操作,集合的每一个行变多行
1.cross apply cross apply 我们可以把它看作成是inner join 来使用 2.outer apply outer apply我们可以把它看做是left join 来使用 注 ...
- linux 更改用户的默认shell
由于卸载了zsh.导致用户的bash没有更新 用户无法登录.后来通过grup更改.修改/etc/passwd中的用户的shell成功 将下面的红色的更改成bash即可. root:x:::root:/ ...
- R语言︱SNA-社会关系网络—igraph包(社群划分、画图)(三)
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 社群划分跟聚类差不多,参照<R语言与网站 ...