【NOIP2016】蚯蚓(队列,单调性)
题解
先来说说非完美解法,也是我去年考场上的做法
考虑一下每一只蚯蚓增加的长度,
这个值并不需要每一次依次增加,
用一个变量维护即可,每次取出蚯蚓就加上这个值,切断蚯蚓就减去这个值。
接下来如何维护最大的蚯蚓,考虑使用一个堆来进行维护
时间复杂度O(mlogm)显然超时(其实也就是常数巨大)
现在,来考虑正解
我们先来脑补几个显然成立的结论
第一个:如果蚯蚓A长于蚯蚓B,一定是优先切蚯蚓A
第二个:一只蚯蚓被切断后,两部分长度一定不会超过原长度
第三个:如果蚯蚓A长于蚯蚓B,若干时间后,A还是长于B(A不被切)
第四个:如果蚯蚓A长于蚯蚓B,A和B切断后,A的两段分别长于B的两段。
那么,我们似乎发现了一点,单调性。
看一看,先切的一定比后切的长。(显然成立呀)
虽然不知道新切出来的部分和下一个切的部分谁更长,但是只需要1次比较就可以知道下一次应该切谁。(比较新切出来的长度和下一个本来应该要切的长度)
那么,我们利用单调性来维护队列。(不需要优先队列了)
首先维护所有初始的蚯蚓长度
然后考虑到所有蚯蚓只会变成两段,并且一段长一段短。那么,再用两个队列维护长的那一段和短的那一段。
现在,得到了3个队列,分别维护初始长度和切下来的两段的长度。
根据上面几个很显然的结论,这三个队列都是满足由长到短的单调性的(初始长度就排个序来维护)
那么,每次取出最长的蚯蚓就只需要考虑三个队列的首元素即可。
这个时候的时间复杂度是O(N+M+NlogN)显然可以在时间范围内求解
这道题目的关键就是 单调性,通过单调性解决掉优先队列,从而优化常数。
最后注意几个小细节:
不要提前算出来P的值,每次用U和V去计算,要不然会掉精度
除的时候一定要强制换成longlong,要不可能会炸int
INF值要开大一点,这样比较的时候才不会出问题。
题目仔细读几遍,看题要仔细。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
using namespace std;
#define MAX 10000100
#define INF 1000000000000000
inline bool cmp(int a,int b)
{
return a>b;
}
long long N,M,Q,U,V,T;
long long q[3][MAX];
long long h[3],t[3];
long long cnt=0,now,fl,aa,bb;
int main()
{
scanf("%d%d%d%d%d%d",&N,&M,&Q,&U,&V,&T);
//P=U/V;
for(int i=1;i<=N;++i)
scanf("%d",&q[0][i]);
sort(&q[0][1],&q[0][N+1],cmp);
h[0]=h[1]=h[2]=1;t[0]=N;t[1]=t[2]=0;
for(int tt=1;tt<=M;++tt)
{
now=fl=-INF;
for(int i=0;i<3;++i)
if(h[i]<=t[i])
if(now<q[i][h[i]])
{
now=q[i][h[i]];
fl=i;
}
h[fl]++;
now+=cnt;
aa=(1LL*now*U)/V;bb=now-aa;
if(aa>bb)swap(aa,bb);
q[1][++t[1]]=bb-cnt-Q;
q[2][++t[2]]=aa-cnt-Q;
cnt+=Q;
if(tt%T==0)
printf("%d ",now);
}
printf("\n");
for(int tt=1;tt<=N+M;++tt)
{
now=fl=-INF;
for(int i=0;i<3;++i)
if(h[i]<=t[i])
if(now<q[i][h[i]])
{
now=q[i][h[i]];
fl=i;
}
if(tt%T==0)
printf("%d ",now+cnt);
h[fl]++;
}
return 0;
}
【NOIP2016】蚯蚓(队列,单调性)的更多相关文章
- [NOIp2016]蚯蚓 (队列)
#\(\color{red}{\mathcal{Description}}\) LInk 这道题是个\(zz\)题 #\(\color{red}{\mathcal{Solution}}\) 我们考虑如 ...
- [Noip2016]蚯蚓 D2 T2 队列
[Noip2016]蚯蚓 D2 T2 Description 本题中,我们将用符号[c]表示对c向下取整,例如:[3.0」= [3.1」=[3.9」=3.蛐蛐国最近蚯蚓成灾了!隔壁跳 蚤国的跳蚤也拿蚯 ...
- 【BZOJ】4721: [Noip2016]蚯蚓 / 【洛谷】P2827 蚯蚓(单调队列)
Description 本题中,我们将用符号[c]表示对c向下取整,例如:[3.0」= [3.1」=[3.9」=3.蛐蛐国最近蚯蚓成灾了!隔壁跳 蚤国的跳蚤也拿蚯蚓们没办法,蛐蛐国王只好去请神刀手来帮 ...
- NC16430 [NOIP2016]蚯蚓
NC16430 [NOIP2016]蚯蚓 题目 题目描述 本题中,我们将用符号 \(\lfloor c \rfloor\) 表示对 c 向下取整,例如:\(\lfloor 3.0 \rfloor = ...
- 【noip2016】蚯蚓(单调性+队列)
题目贼长 大意是你有n个线段,每一秒你要拿出来最长的一个线段切成两段长度为[p*u](向下取整)和u-[p*u]两段(其中u是线段长,p是一个大于0小于1的实数)没被切的线段长度加q(0<q&l ...
- [Noip2016]蚯蚓 (单调队列)
题干 本题中,我们将用符号[c]表示对c向下取整,例如:[3.0」= [3.1」=[3.9」=3.蛐蛐国最近蚯蚓成灾了!隔壁跳蚤国的跳蚤也拿蚯蚓们没办法,蛐蛐国王只好去请神刀手来帮他们消灭蚯蚓.蛐蛐国 ...
- 2018.09.11 bzoj47214721: [Noip2016]蚯蚓(单调队列)
传送门 好题. 目测只会多带一个log2(n+m)" role="presentation" style="position: relative;"& ...
- 蚯蚓(noip2016,贪心,单调性)
题目描述 本题中,我们将用符号⌊c⌋ 表示对 c 向下取整,例如:⌊3.0⌋=⌊3.1⌋=⌊3.9⌋=3 . 蛐蛐国最近蚯蚓成灾了!隔壁跳蚤国的跳蚤也拿蚯蚓们没办法,蛐蛐国王只好去请神刀手来帮他们消灭 ...
- 【noip2017 day2T2】【蚯蚓】巧用队列单调性线性处理
(画师当然是武内崇啦) Description 本题中,我们将用符号[c]表示对c向下取整,例如:[3.0」= [3.1」=[3.9」=3.蛐蛐国最近蚯蚓成灾了!隔壁跳蚤国的跳蚤也拿蚯蚓们没办法,蛐蛐 ...
- [noip2016]蚯蚓<单调队列+模拟>
题目链接:https://vijos.org/p/2007 题目链接:https://www.luogu.org/problem/show?pid=2827#sub 说实话当两个网站给出AC后,我很感 ...
随机推荐
- Python自动化--语言基础4--模块、文件读写、异常
模块1.什么是模块?可以理解为一个py文件其实就是一个模块.比如xiami.py就是一个模块,想引入使用就在代码里写import xiami即可2.模块首先从当前目录查询,如果没有再按path顺序逐一 ...
- 基于JDK1.8的ConcurrentHashMap分析
之前看过ConcurrentHashMap的分析,感觉也了解的七七八八了.但昨晚接到了面试,让我把所知道的ConcurrentHashMap全部说出来. 然后我结结巴巴,然后应该毫无意外的话就G了,今 ...
- linux中权限对文件和目录的作用
chmod 755 a.txt 文件: r:读取文件内容(cat more head tail) w:编辑,新增,修改文件的内容(vi,echo) 不包括删除文件:原因是只能对文件内容进行修改,而在l ...
- .NET中的按需加载/延迟加载 Lazy<T>
业务场景: 在项目开发中,经常会遇到特定的对象使用的加载问题,有的实例对象我们创建之后并非需要使用,只是根据业务场景来调用,所以可能会导致很多无效的实例加载 延迟初始化出现于.NET 4.0,主要用于 ...
- 聚类-K均值
数据来源:http://archive.ics.uci.edu/ml/datasets/seeds 15.26 14.84 0.871 5.763 3.312 2.221 5.22 Kama 14.8 ...
- UVA - 1592 Database 枚举+map
思路 直接枚举两列,然后枚举每一行用map依次记录每对字符串出现的是否出现过(字符串最好先处理成数字,这样会更快),如果出现就是"NO",否则就是"YES". ...
- java网络编程(1)
太久没有用java做一些东西了,搞太多的协议框架,基本的东西好像快忘记了~每天抽出一点时间出来,来好好温习下基础,顺便记录下来,以后还忘记可以回来看看==.首先从网络编程开始吧==.这玩意太久没有用了 ...
- 位置信息类API调用的代码示例合集:中国省市区查询、经纬度地址转换、POI检索等
以下示例代码适用于 www.apishop.net 网站下的API,使用本文提及的接口调用代码示例前,您需要先申请相应的API服务. 中国省市区查询:2017最新中国省市区地址 经纬度地址转换:经纬度 ...
- APICloud ajpush(极光推送) 6009
APICloud 其它的都按照APICloud的使用说明操作即可,但有一点需要提醒像我一样才接触的朋友:极光推送需打包测试,不能直接自定义Loader.否则,你会发现在绑定别名的方法时会一直返回&qu ...
- c#判断外部可执行程序是否已打开(若未打开则打开)
#region 通过当前代码执行路径向上找到相关exe,并根据processes.Length判断是否已启动 private bool CheckAndOpenExe(string exeName) ...