题面

Description

在下面的方格中,每行,每列,以及两条对角线上的数字可以看作是五位的素数。方格中的行按照从左到右的顺序组成一个素数,而列按照从上到下的顺序。两条对角线也是按照从左到右的顺序来组成。

这些素数各个数位上的和必须相等。

左上角的数字是预先定好的。

一个素数可能在方阵中重复多次。

如果不只有一个解,将它们全部输出(按照这25个数字组成的25位数的大小排序)。

一个五位的素数开头不能为0(例如:00003 不是五位素数)

Input

一行包括两个被空格分开的整数:各个位的数字和 和左上角的数字。

Output

对于每一个找到的方案输出5行,每行5个字符, 每行可以转化为一个5位的质数.在两组方案中间输出一个空行. 如果没有解就单独输出一行"NONE"。

Sample Input

11 1

Sample Output

11351

14033

30323

53201

13313

11351

33203

30323

14033

33311

13313

13043

32303

50231

13331

题解

这道题,搜索好题。

先说我的第一种方法:

首先筛选质数(一个很显然的优化:只需要数字和为给定值的质数)

然后是将质数建立字典树

然后从第一列开始,每列填写一个质数,然后每行每对角线依次检查,判断是否可行。每次的解先存起来,最后排序、输出。

长长的代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<vector>
#include<algorithm>
using namespace std;
bool zs(int x)
{
int t=sqrt(x);
for(int i=2;i<=t;++i)
if(x%i==0)return false;
return true;
}
int cnt=0,tot=0,pri[5000];
int S,A;
int g[6][6];
int number[5000][6];
struct Node
{
int vis[10];//字典树
}t[100000];
struct Ans
{
int g[6][6];
}ans[100];
bool operator <(Ans a,Ans b)
{
for(int i=1;i<=5;++i)
for(int j=1;j<=5;++j)
if(a.g[i][j]!=b.g[i][j])
return a.g[i][j]<b.g[i][j];
}
int sum=0;
inline void outp()
{
for(int i=1;i<=5;++i)
{
for(int j=1;j<=5;++j)
printf("%d",g[i][j]);
printf("\n");
}
}
inline void Record()//记录答案
{
sum++;
for(int i=1;i<=5;++i)
for(int j=1;j<=5;++j)
ans[sum].g[i][j]=g[i][j];
}
inline void Add(int x)//判断是否可行并构建字典树
{
int a[6]={0,x/10000,x/1000%10,x/100%10,x/10%10,x%10};
if(a[1]+a[2]+a[3]+a[4]+a[5]!=S)return;
if(!zs(x))return;
int now=0;
++tot;//满足条件的素数
pri[tot]=x;
//number[tot]=a;
//cout<<pri[tot]<<endl;
for(int i=1;i<=5;++i)//构造字典树
{
if(t[now].vis[a[i]]==0)
t[now].vis[a[i]]=++cnt;
now=t[now].vis[a[i]];
}
}
inline bool check(int x)//检查到第x列
{
int now,s;
//检验左上到右下对角线
s=now=0;
for(int j=1;j<=x;++j)
{
s+=g[j][j];
if(t[now].vis[g[j][j]]==0)return false;
now=t[now].vis[g[j][j]];
}
if(s>S)return false;//如果和已经大于S
if(x==5&&s!=S)return false;//最后的和必须为S
//检验左下到右上对角线
s=now=0;
for(int j=1;j<=x;++j)
{
s+=g[6-j][j];
if(t[now].vis[g[6-j][j]]==0)return false;
now=t[now].vis[g[6-j][j]];
}
if(s>S)return false;//如果和已经大于S
if(x==5&&s!=S)return false;//最后的和必须为S
for(int i=1;i<=5;++i)//枚举行
{
now=s=0;
for(int j=1;j<=x;++j)
{
s+=g[i][j];
if(t[now].vis[g[i][j]]==0)return false;
now=t[now].vis[g[i][j]];//字典树
}
if(s>S)return false;//如果和已经大于S
if(x==5&&s!=S)return false;//最后的和必须为S
} return true;
}
void DFS(int x)
{
//outp();
//cout<<endl;
if(!check(x-1))return;//不合要求
if(x==6)
{
Record();
//outp();
return;
}
for(int i=1;i<=tot;++i)//填数
{
g[1][x]=pri[i]/10000;
g[2][x]=pri[i]/1000%10;
g[3][x]=pri[i]/100%10;
g[4][x]=pri[i]/10%10;
g[5][x]=pri[i]%10;
DFS(x+1);
g[1][x]=g[2][x]=g[3][x]=g[4][x]=g[5][x]=-1;//回朔
}
}
int main()
{
freopen("prime.in","r",stdin);
freopen("prime.out","w",stdout);
cin>>S;
cin>>A;
for(int i=10003;i<=99999;i+=2)
Add(i);
memset(g,-1,sizeof(g));
for(int i=1;i<=tot;++i)//枚举第一列
{
if(pri[i]/10000==A)
{
g[1][1]=A;
g[2][1]=pri[i]/1000%10;
g[3][1]=pri[i]/100%10;
g[4][1]=pri[i]/10%10;
g[5][1]=pri[i]%10;
DFS(2);//搜索
}
if(pri[i]/10000>A)break;
}
sort(&ans[1],&ans[sum+1]);
for(int k=1;k<=sum;++k)
{
for(int i=1;i<=5;++i)
{
for(int j=1;j<=5;++j)
printf("%d",ans[k].g[i][j]);
printf("\n");
}
printf("\n");
}
if(sum==0)
cout<<"NONE"<<endl;
return 0;
}



这样子求解还是很容易的,但是,并不能够随时判断一个质数是否能够填上去,导致会求出大量的无用解法,导致超时。
![这里写图片描述](http://img.blog.csdn.net/20170706114343691?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvcXFfMzA5NzQzNjk=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast)


那么,证明这样一列一列填还是效率太低。

然后看我的第二种解法:

首先还是找出所有满足条件的质数,

暴力求出他们的前缀和后缀(其实建立字典树也是可以的)

接下来,每次搜索一个格子(从第一行开始,自左向右,自上而下),

枚举填的数,并且判断是否可行(判断每一行是否存在前缀,每一列是否存在前缀,主对角线是否存在前缀,副对角线是否存在后缀),这样就能够减去大量的不合理情况。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<vector>
#include<algorithm>
using namespace std;
inline bool zs(int x)
{
int t=sqrt(x);
for(int i=2;i<=t;++i)
if(x%i==0)return false;
return true;
}
int S,A;
int g[6][6];
int hz[1000001],qz[1000001];
int pp[6]={1,10,100,1000,10000,100000};
int sum=0;
int L[10],R[10];
int djx1,djx2;
inline void outp()
{
for(int i=1;i<=5;++i)
{
printf("%d\n",L[i]);
}
printf("\n");
}
inline void Add(int x)//判断是否可行
{
int a[6]={0,x/10000,x/1000%10,x/100%10,x/10%10,x%10};
if(a[1]+a[2]+a[3]+a[4]+a[5]!=S)return;
if(!zs(x))return;
int i=x;
qz[i/10000]=qz[i/1000]=qz[i/100]=qz[i/10]=qz[i]=true;//前缀
hz[i%10000]=hz[i%1000]=hz[i%100]=hz[i%10]=hz[i]=true;//后缀
}
void DFS(int x,int y)
{
if(y==6)//换行
{
y=1;x+=1;
}
if(x==6)//输出解
{
++sum;
outp();
return;
}
bool ok1,ok2,ok3,ok4;
for(int i=0;i<=9;++i)//枚举当前数字
{
ok1=qz[L[x]*10+i];//行的值要在前缀中
ok2=qz[R[y]*10+i];//列的值要在前缀中
ok3=((x!=y)||(x==y&&qz[djx1*10+i]));//对角线的值要在前缀中
ok4=((x+y!=6)||(x+y==6&&hz[djx2+i*pp[x-1]]));//对角线的值要在后缀中 if(!(ok1&&ok2&&ok3&&ok4))continue; L[x]=L[x]*10+i;
R[y]=R[y]*10+i;
if(x==y) djx1=djx1*10+i;
if(x+y==6)djx2=djx2+i*pp[x-1]; DFS(x,y+1); //向下搜索 L[x]/=10;
R[y]/=10;
if(x==y) djx1/=10;
if(x+y==6)djx2-=i*pp[x-1];
}
}
int main()
{
freopen("prime.in","r",stdin);
freopen("prime.out","w",stdout);
cin>>S;
cin>>A;
for(int i=10003;i<=99999;i+=2)
Add(i);
memset(g,-1,sizeof(g));
g[1][1]=A;
L[1]=R[1]=djx1=A;
DFS(1,2);
if(sum==0)
cout<<"NONE"<<endl;
return 0;
}

这种方法能够AC,但是效率很低。

AC归为AC

其实这题如果更改搜索顺序和得到更好地优化。

并且很明显的一点就是,如果求出了某 行/列/对角线 上的四个数,最后一个是可以直接计算判断的(效率更高)。【但是我很懒,没有继续优化了】

【CJOJ1793】【USACO 4.3.2】素数方阵的更多相关文章

  1. 素数方阵的工程ing

    2016 12 12 16 12 开始 2016 12 13 17 30   还没开打 2017 1 3 ..... 一星期前貌似打完了... 如下 #include<iostream> ...

  2. CSU训练分类

    √√第一部分 基础算法(#10023 除外) 第 1 章 贪心算法 √√#10000 「一本通 1.1 例 1」活动安排 √√#10001 「一本通 1.1 例 2」种树 √√#10002 「一本通 ...

  3. 177. [USACO Jan07] 有限制的素数

    177. [USACO Jan07] ★   输入文件:qprime.in   输出文件:qprime.out   简单对比 时间限制:1 s   内存限制:128 MB Farmer John 开始 ...

  4. USACO1.5Superprime Rid[附带关于素数算法时间测试]

    题目描述 农民约翰的母牛总是产生最好的肋骨.你能通过农民约翰和美国农业部标记在每根肋骨上的数字认出它们.农民约翰确定他卖给买方的是真正的质数肋骨,是因为从右边开始切下肋骨,每次还剩下的肋骨上的数字都组 ...

  5. [USACO精选] 第一章 数值计算

    好不容易坑来了传说中的USACO精选,近100题我要是能做完就哈哈哈哈了…继今天学并查集连番受挫之后,决定写一写基础题. #0 负二进制 2014-01-10 其实是想到就会做,不想到就不会做的题,数 ...

  6. (Step1-500题)UVaOJ+算法竞赛入门经典+挑战编程+USACO

    http://www.cnblogs.com/sxiszero/p/3618737.html 下面给出的题目共计560道,去掉重复的也有近500题,作为ACMer Training Step1,用1年 ...

  7. USACO Chapter 1 解题总结

    USACO Chapter 1 解题总结 1.1.1 Your Ride Is Here 基本字符串操作,无压力. 1.1.2 Greedy Gift Givers 基础模拟题,弄明白题意,不怕麻烦, ...

  8. USACO chapter1

    几天时间就把USACO chapter1重新做了一遍,发现了自己以前许多的不足.蒽,现在的程序明显比以前干净很多,而且效率也提高了许多.继续努力吧,好好的提高自己.这一章主要还是基本功的训练,没多少的 ...

  9. 丑数(USACO)

    这个题是一个动态规划加优化的经典题 1246 丑数 USACO  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题解 题目描述 Description 对 ...

随机推荐

  1. hibernate连接MySQL配置hibernate.cfg.xml

    今天刚学完hibernate所以急着做一个hibernate的项目,有不足的请帮我改正一下.谢谢大家 <hibernate-configuration> <session-facto ...

  2. ChineseUtils

    这里获得汉字的拼音使用了pinyin4j这个插件,因为多音字的原因效果并不理想 /** * 获得汉字拼音 * @param name * @return */ @SuppressWarnings(&q ...

  3. Rsync(远程同步): linux中Rsync命令的实际示例

    rsync的 ( 远程同步 )为在Linux / Unix系统局部 拷贝和同步文件和目录远程以及一个最常用的命令. 随着rsync命令的帮助,您可以复制并在目录中远程和本地同步数据,在磁盘和网络,进行 ...

  4. MySQL中order by排序时,数据存在null咋办

    order by排序是最常用的功能,但是排序有时会遇到数据为空null的情况,这样排序就会乱了,这里以MySQL为例,记录我遇到的问题和解决思路. 问题: 网页要实现table的行鼠标拖拽排序,我用A ...

  5. 如何使用 VS2015 进行远程调试?

    VisualStudio\Microsoft Visual Studio 14.0\Common7\IDE\Remote Debugger 直接复制 Remote Debugger 文件,里面包含了 ...

  6. POJ - 1190 生日蛋糕 dfs+剪枝

    思路:说一下最重要的剪枝,如果当前已经使用了v的体积,为了让剩下的表面积最小,最好的办法就是让R尽量大,因为V = πR 2H,A' = 2πRH,A' = V / R * 2 ,最大的R一定是取当前 ...

  7. Python基于Flask框架配置依赖包信息的项目迁移部署小技巧

    一般在本机上完成基于Flask框架的代码编写后,如果有接口或者数据操作方面需求需要把代码部署到指定服务器上. 一般情况下,使用Flask框架开发者大多数都是选择Python虚拟环境来运行项目,不同的虚 ...

  8. js处理时间戳显示的问题

    function getDate(tm){ ); var year = date.getFullYear(); var month = date.getMonth()+1; var day = dat ...

  9. Ambari安装小记

    在Ambari配置过程中,组件的定制与分配很重要

  10. 标准库bind函数中使用占位符placeholders

    placeholders ,占位符.表示新的函数对象中参数的位置.当调用新的函数对象时,新函数对象会调用被调用函数,并且其参数会传递到被调用函数参数列表中持有与新函数对象中位置对应的占位符. 举个例子 ...