BZOJ_1833_[ZJOI2010]count 数字计数_数位DP
BZOJ_1833_[ZJOI2010]count 数字计数_数位DP
题意:
给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次。
分析:
数位DP
f[i][j][k]表示i位数,以j开头的数中k出现的次数
预处理出来10的幂(在数位DP中经常会用到)
f[i][j][k]+=f[i-1][l][k]+(j==k)*10^i
之后按位枚举,0的情况特殊处理
代码:
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define LL long long
LL f[15][11][11],a,b,mi[15];
void init(){
mi[1]=1;
for(int i=2;i<=13;i++){
mi[i]=mi[i-1]*10;
}
for(int i=0;i<=9;i++){
f[1][i][i]=1;
}
for(int i=2;i<=13;i++){
for(int j=0;j<=9;j++){
for(int k=0;k<=9;k++){
for(int l=0;l<=9;l++){
f[i][j][k]+=f[i-1][l][k];
if(j==k)f[i][j][k]+=mi[i-1];
}
}
}
}
}
LL calc(LL x,int p){
if(!x)return (!p);
LL re=0;
int d=13;
while(mi[d]>x)d--;
//d++;
for(int i=1;i<d;i++){
for(int j=1;j<=9;j++){
re+=f[i][j][p];
}
}
if(!p)re++;
int cur=x/mi[d];
for(int i=1;i<cur;i++){
re+=f[d][i][p];
}
x%=mi[d];
if(cur==p)re+=x+1;
for(int i=d-1;i;i--){
cur=x/mi[i];
for(int j=0;j<cur;j++){
re+=f[i][j][p];
}
x%=mi[i];
if(cur==p)re+=x+1;
}
return re;
}
int main(){
scanf("%lld%lld",&a,&b);
init();
int flg=0;
for(int i=0;i<=9;i++){
if(!flg)flg=
printf("%lld",calc(b,i)-calc(a-1,i));
else printf(" %lld",calc(b,i)-calc(a-1,i));
}
}
BZOJ_1833_[ZJOI2010]count 数字计数_数位DP的更多相关文章
- BZOJ1833 ZJOI2010 count 数字计数 【数位DP】
BZOJ1833 ZJOI2010 count 数字计数 Description 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. Input 输入文件中仅包 ...
- 【BZOJ】1833: [ZJOI2010] count 数字计数(数位dp)
题目 传送门:QWQ 分析 蒟蒻不会数位dp,又是现学的 用$ dp[i][j][k] $ 表示表示长度为i开头j的所有数字中k的个数 然后预处理出这个数组,再计算答案 代码 #include < ...
- 【BZOJ1833】[ZJOI2010] count 数字计数(数位DP)
点此看题面 大致题意: 求在给定的两个正整数\(a\)和\(b\)中的所有整数中,\(0\sim9\)各出现了多少次. 数位\(DP\) 很显然,这是一道数位\(DP\)题. 我们可以用前缀和的思想, ...
- [BZOJ 1833] [ZJOI2010] count 数字计数 【数位DP】
题目链接:BZOJ - 1833 题目分析 数位DP .. 用 f[i][j][k] 表示第 i 位是 j 的 i 位数共有多少个数码 k . 然后差分询问...Get()中注意一下,如果固定了第 i ...
- bzoj 1833: [ZJOI2010]count 数字计数【数位dp】
非典型数位dp 先预处理出f[i][j][k]表示从后往前第i位为j时k的个数,然后把答案转换为ans(r)-ans(l-1),用预处理出的f数组dp出f即可(可能也不是dp吧--) #include ...
- bzoj 1833 [ZJOI2010]count 数字计数(数位DP)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1833 [题意] 统计[a,b]区间内各数位出现的次数. [思路] 设f[i][j][k ...
- BZOJ_1833_[ZJOI2010]_数字计数_(数位dp)
描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1833 统计\(a~b\)中数字\(0,1,2,...,9\)分别出现了多少次. 分析 数位dp ...
- bzoj1833: [ZJOI2010]count 数字计数(数位DP+记忆化搜索)
1833: [ZJOI2010]count 数字计数 题目:传送门 题解: 今天是躲不开各种恶心DP了??? %爆靖大佬啊!!! 据说是数位DP裸题...emmm学吧学吧 感觉记忆化搜索特别强: 定义 ...
- BZOJ 1833: [ZJOI2010]count 数字计数( dp )
dp(i, j, k)表示共i位, 最高位是j, 数字k出现次数. 预处理出来. 差分答案, 对于0~x的答案, 从低位到高位进行讨论 -------------------------------- ...
随机推荐
- sqlServer遇到的问题
重置自增列:dbcc checkident(表名,reseed,数字(初始值))
- 解决记录:win10 无法安装VS2017,visual studio installer下载进度始终为0
问题描述:win10 下无法安装VS2017,visual studio installer下载进度始终为0,点击取消按钮后,也没有反应,visual studio installer也关闭不掉: 具 ...
- 【转】H.264中的NAL技术
NAL技术 1.NAL概述 NAL全称Network Abstract Layer,即网络抽象层.在H.264/AVC视频编码标准中,整个系统框架被分为了两个层面:视频编码层面(VCL)和网络抽象层面 ...
- MongoDB使用过程中的一些问题
1.MongoDB配置修改不生效的问题:今天因为某个原因,需要修改mongodb的配置文件. 改完以后,在init.d里面restart命令重启server,后来stop又start重启server. ...
- Sina微博爬取@pyspider
这是一篇不应该写的文章,都写了,针对特定“方式”的爬虫也就没法爬了. 1.模拟登录的一些文章: 解析新浪微博的登录过程(2013-12-23): http://www.cnblogs.com/houk ...
- Bootstrap免费模板站推荐
第一个:http://startbootstrap.com/ 第二个:http://www.bootstrapzero.com/ 第三个:https://bootswatch.com/ 第四个:htt ...
- Java 重入锁 ReentrantLock 原理分析
1.简介 可重入锁ReentrantLock自 JDK 1.5 被引入,功能上与synchronized关键字类似.所谓的可重入是指,线程可对同一把锁进行重复加锁,而不会被阻塞住,这样可避免死锁的产生 ...
- maven jsp out.print()request.getParameter() 爆红
如图: 解决方案: 在pom文件中添加依赖: <!-- https://mvnrepository.com/artifact/javax.servlet.jsp/jsp-api -->&l ...
- 微信小程序中自定义函数的学习使用
新手,最近在给学校搞个党费计算器.需要自己定义函数来实现某个功能. 1.无参函数: 函数都是写在js文件里面的. Page({ data:{ income1:'0', }, cal:function( ...
- Webpack的配置与使用
一.什么是Webpack? WebPack可以看做是模块打包机.用于分析项目结构,找到JavaScript模块以及其它的一些浏览器不能直接运行的拓展语言(Scss,TypeScript等),将 ...