首先O(n2)dp很好想

f[i][j]表示i子树内的所有边都被覆盖且i~j的路径也都被覆盖的最小花费。

考虑去掉无用的状态,其实真正用到的就是每一条链。

去掉第二维,f[i]表示i子树内的边都被覆盖且父向边也被覆盖的最小花费。

那么怎么转移呢?

f[i]可以是任意一条包含i和fa[i]的链转移而来,

首先要选这条链,还要加上这条链下端点到i所有其他儿子的f值,这样复杂度好像依旧很高

再优化,这不就是线段树取一个min吗?

那么我们现在要做的就是在每一个点上,在对应的一些链中取一个min

对于每条链,它是在它的下端点之上开始做出贡献的,

所以每个点控制的区间要是它的子树中所有向上连的边

当我们搞点x时,首先要算出他所有儿子的f值加和sum.然后要将以x为下端点的链的值更新为sum+c[i],还要将所有以x为上端点的链赋值inf,还要对其所有儿子的控制的链都加上sum-f[son],最后对于他控制的所有链取一个min就好了.

代码

 #include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
#define N 300005
#define inf 1000000000000000ll
#define LL long long
using namespace std;
int n,m,c[N];
int e=,head[N],out[N],in[N];
struct edge{int v,next;}ed[*N];
void add(int u,int v,int *h){
ed[e]=(edge){v,h[u]};
h[u]=e++;
}
int L[N],R[N],tot,d[N];
void dfs(int x,int fa){
L[x]=tot+;
for(int i=in[x];i;i=ed[i].next)
d[ed[i].v]=++tot;
for(int i=head[x];i;i=ed[i].next)
if(ed[i].v!=fa)dfs(ed[i].v,x);
R[x]=tot;
}
LL f[N];
LL minn[*N],lazy[*N];
void update(int rt,int l,int r,int x,LL y){
if(l==r){minn[rt]=y;return ;}
int mid=(l+r)>>;
if(x<=mid)update(rt<<,l,mid,x,y);
else update(rt<<|,mid+,r,x,y);
minn[rt]=min(min(minn[rt<<],minn[rt<<|])+lazy[rt],inf);
}
void add(int rt,int l,int r,int x,int y,LL z){
if(x<=l&&r<=y){lazy[rt]+=z;minn[rt]+=z;return ;}
int mid=(l+r)>>;
if(x<=mid) add(rt<<,l,mid,x,y,z);
if(y>mid) add(rt<<|,mid+,r,x,y,z);
minn[rt]=min(min(minn[rt<<],minn[rt<<|])+lazy[rt],inf);
}
LL query(int rt,int l,int r,int x,int y){
if(x<=l&&r<=y) return minn[rt];
LL ans=inf;
int mid=(l+r)>>;
if(x<=mid)ans=min(ans,query(rt<<,l,mid,x,y));
if(y>mid) ans=min(ans,query(rt<<|,mid+,r,x,y));
return min(ans+lazy[rt],inf);
}
void solve(int x,int fa){
LL ans=;
for(int i=head[x];i;i=ed[i].next){
if(ed[i].v==fa)continue;
solve(ed[i].v,x);
ans=min(f[ed[i].v]+ans,inf);
}
if(x==){f[]=ans;return;}
for(int i=in[x];i;i=ed[i].next)
update(,,m,d[ed[i].v],ans+c[ed[i].v]);
for(int i=out[x];i;i=ed[i].next)
update(,,m,d[ed[i].v],inf);
for(int i=head[x];i;i=ed[i].next){
if(ed[i].v==fa)continue;
add(,,m,L[ed[i].v],R[ed[i].v],ans-f[ed[i].v]);
}
f[x]=query(,,m,L[x],R[x]);
} int main(){
scanf("%d%d",&n,&m);
for(int i=,u,v;i<n;i++){
scanf("%d%d",&u,&v);
add(u,v,head);
add(v,u,head);
}
for(int i=,u,v;i<=m;i++){
scanf("%d%d%d",&u,&v,&c[i]);
add(u,i,in);
add(v,i,out);
}
dfs(,);
memset(minn,0x15f,sizeof minn);
memset(lazy,,sizeof lazy);
solve(,);
if(f[]>=inf)printf("-1\n");
else printf("%lld\n",f[]);
return ;
}

youmu

codeforces 671D的更多相关文章

  1. Codeforces 671D Roads in Yusland [树形DP,线段树合并]

    洛谷 Codeforces 这是一个非正解,被正解暴踩,但它还是过了. 思路 首先很容易想到DP. 设\(dp_{x,i}\)表示\(x\)子树全部被覆盖,而且向上恰好延伸到\(dep=i\)的位置, ...

  2. codeforces 671D Roads in Yusland & hdu 5293 Tree chain problem

    dp dp优化 dfs序 线段树 算是一个套路.可以处理在树上取链的问题.

  3. Codeforces 671D. Roads in Yusland(树形DP+线段树)

    调了半天居然还能是线段树写错了,药丸 这题大概是类似一个树形DP的东西.设$dp[i]$为修完i这棵子树的最小代价,假设当前点为$x$,但是转移的时候我们不知道子节点到底有没有一条越过$x$的路.如果 ...

  4. python爬虫学习(5) —— 扒一下codeforces题面

    上一次我们拿学校的URP做了个小小的demo.... 其实我们还可以把每个学生的证件照爬下来做成一个证件照校花校草评比 另外也可以写一个物理实验自动选课... 但是出于多种原因,,还是绕开这些敏感话题 ...

  5. 【Codeforces 738D】Sea Battle(贪心)

    http://codeforces.com/contest/738/problem/D Galya is playing one-dimensional Sea Battle on a 1 × n g ...

  6. 【Codeforces 738C】Road to Cinema

    http://codeforces.com/contest/738/problem/C Vasya is currently at a car rental service, and he wants ...

  7. 【Codeforces 738A】Interview with Oleg

    http://codeforces.com/contest/738/problem/A Polycarp has interviewed Oleg and has written the interv ...

  8. CodeForces - 662A Gambling Nim

    http://codeforces.com/problemset/problem/662/A 题目大意: 给定n(n <= 500000)张卡片,每张卡片的两个面都写有数字,每个面都有0.5的概 ...

  9. CodeForces - 274B Zero Tree

    http://codeforces.com/problemset/problem/274/B 题目大意: 给定你一颗树,每个点上有权值. 现在你每次取出这颗树的一颗子树(即点集和边集均是原图的子集的连 ...

随机推荐

  1. Fragment生命周期与Fragment执行hide、show后的生命周期探讨

    一.Fragment 生命周期中的每个方法的意义与作用: 1.setUserVisibleHint()(此方法不属于生命周期方法):设置Fragment 用户可见或不可见时调用此方法,此方法在Frag ...

  2. 移动端 slide拖拽

    <html> <head> <meta charset="UTF-8"> <meta name="viewport" ...

  3. RocketMQ源码 — 六、 RocketMQ高可用(1)

    高可用究竟指的是什么?请参考:关于高可用的系统 RocketMQ做了以下的事情来保证系统的高可用 多master部署,防止单点故障 消息冗余(主从结构),防止消息丢失 故障恢复(本篇暂不讨论) 那么问 ...

  4. Ajax的简单使用

    仅介绍Ajax的使用,让入门小白快速上手 //请自行引入jQuery库文件 <script type="text/javascript"> $(function() { ...

  5. laravel项目使用twemproxy部署redis集群

    twemproxy是twitter开发的一个redis代理proxy,Twemproxy可以把多台redis server当作一台使用,开发人员通过twemproxy访问这些redis servers ...

  6. 箭头函数不会修改this

    function Person () { this.name = 'little bear', this.age = 18 setTimeout(()=>{ console.log(this ) ...

  7. ubuntu 16.04安装smatrgitHG工具

    SmartGit/HG 是一款开放源代码的.跨平台的.支持 Git 和 Mercurial 的 SVN 图形客户端,可运行在Windows.Linux 和 MAC OS X 系统上. 1.安装 Ubu ...

  8. unity3d从入门到精通要掌握什么内容

    Unity3d就业方向广.游戏行业占据了65%的比例,也有虚拟现实,增强现实等方向,就业前景火爆.可以从事的岗位:游戏开发工程师.移动应用开发工程师.游戏场景设计师.游戏特效设计师.VR开发工程师.A ...

  9. CDN及CDN加速原理

    本想自己写这个主题的文章,但网上已经有人写了一篇非常好的文章,觉得难以望其项背.就没有必要再写,直接转载如下: 在不同地域的用户访问网站的响应速度存在差异,为了提高用户访问的响应速度.优化现有Inte ...

  10. bootstrap datepicker 属性设置 以及方法和事件

    DatePicker支持鼠标点选日期,同时还可以通过键盘控制选择: page up/down - 上一月.下一月 ctrl+page up/down - 上一年.下一年 ctrl+home - 当前月 ...