先来完成一个将输入数据转换成json格式输出的小任务

 #include <stdio.h>

 int main(){
float latitude;
float longtitude;
char info[];
int started=;
puts("data[");
while(scanf("%f,%f,%79[^\n]",&latitude,&longtitude,info)==){
if(started){
printf(",\n");
}
else{
started=;
}
printf("{latitude:%f,longtitude:%f,info:'%s'}",latitude,longtitude,info);
}
puts("\n]");
return ;
}

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAg0AAAFcCAIAAADEQBoMAAAZH0lEQVR4nO3dv67c2H0H8PMIeoPd8nZKo1ZaXECllIXgQpUkQBCQSlv6BshiXbjZYiEnTQo7tqut7PULyJG6AEG0MZAqRew8gZU3uCnmzoj/zo+HHHJI3vl88MNixOEcHv6Z8x2Sc2fTT376C6WUUipX6Sc//cXrX75VSim1SP3bl1+uoXLdkxNKKbVwLZ4QckIppVZdiyeEnFBKqVXX4gkhJ5RSatW1eELICaWUWnUtnhByQimlTlQXodyrFk8IOaGUUieqE+fE9fX19fV1PEVOKKXUiioIg5nOJ6rBcExITJATb/7pnwfV0I379MnFxf2rl7WJby4vLi6vWrNVXF69ueyO7edP9y95+ephEO+N9petro1QUt8/un9x8eTN4v1XfWVPff/o/riDfDN1+pw4xMORITFNTvzXf/9vrv7u7/+x+t/BOXH1vDWAP7x3vzVtf3g9fXJx79X3r3/59vUv31zuI+HTxG+v7jVyovud+f2j+4NyopZJrRfmUu1TT/Z9O3T+Uzcunrw54i009+jTsWorr8rniYePvm1tq73KUXSaFTyfnOjczm/lRO6pI3Pi+DOJyXLi3//jQ2ENzIk3lxcX9169qb+F3lzev3qZeQOfPid2JyXVmZ8+aQxAXWcDV88b49TNyU11tm+v7h07SM0++ow90Sna9ZMP0C9fPTy0+fLVw+ouqBw5tcyebQVPvadWUrntfA517ucTqdignKgeUk+fXFxe1d/b9UG/9ZKTXHdqDffd9e3VveZsuwisfZi6fFVfo8LGo5p/9OlYtUlq/g/yYQx/ioe5VvDke2qVdaoYHlm5wWF0ayOemupMYvn7EzPlxO6dXKDzU2H/+URx5c6Iv390P/g0VH1Ve85Gm28uLx4++rY2OFbfQpXHNwNKJeTqa1S9Uvfkqjn61Ddp57K6/3nTyKf03b+2cyM0Z2sPB5UpzZkb+d34+Hmj1b1Pr7p/9bLWSGaPF+ZEdi9XPohUd1N5T+I9lXsj7JfVOpF9c3lRaSGzrYZVpYet0/pwEZnDLNzOjYOkfaTFLfe9L0bVRca0rcVtTni5acnvOx1yYteJaio0/jkqJ3p39m6EbQ4ul1d9OdFx56PhED+ZnOi5LlR/1dXzxoH78tXDi2pn7l+9bJ0PVU+najlRv4D+6d179fyiMfrnn62d9dfOXXZv0drqX161uvQqt2pdszXPjQ6JmGmzfT5Ra6G2bXerWdnF1bWub5/G3gnH5U/Z0Np3uy1ZDbBHVwN7Eu+p5rLyK17/9ND7kvJq5FDXsZRZRHCYhdu58dEhc6TlWg7fF1uuI687TVW57g3LiUMk7B5U/zs+JyrHa6f2wTfgutN+aM4s9yZ+or4NuyLRGvgqMXP4wP7y1cPOyx3NEaHS80reNK5lva0PH+1nm6+96d7V892XBSrj3cNH3wa5WF+17tnqn8oPI29hm+07RpXt03H2UxnW689+uomaPRHcje+1Y6OjM51jUHFP4j3V3G65FT+0U/vM0fOSAYdrvofBIuLDLNrO9Wt93d8HybccvC+2XYsnxCw50TifaEwfmROZ92RfTvSdTzRvGjc+FE+bE9WrN7s6DJ2VYWjfZuMoz35yrL4fOt5dlZk733uVT4W1rNqdvx8um9RPZdr5Wl+17tka7TQ+BvZ89TlzBbKRsq1t1Vhu67hqbZCObxO0VzB/Hlnak3hPNY+x7IpXZqgch70vaeymxsuz69g8lroX0XeYBdu5fdLc/7WOTy3n3xcbr8UTYvbziXZ+nPB8omdiMyeapxcFOdH1ASeqVq7cvDFqEXUzPuZHnLlyYj+K7T8q7nvV3HqHMaL5Hq5vrvZstfOSvpmLzlEqG2d4TrReeDM2dS+l2ueT50R0Pz+TE8d+BWDEsRQsvX2RKvNlxXYwfDoq5MQtyInOs4dqbOweTHg+0VmfBrX87YdPV1ei0aQkJ7r+DCKq1h3Rq+cXFw8vn9QW/fTJxcWT542LVEU50ZFb1au0fRcEdkPh1SG0doGR2Q6NK8W5m7212W7myQ7ctZkbl3qiSJ4kJ54+6fpY3b3vsp0p7km8p942psfflWht0oEfX7pr8LEUdLh6mAXbufu7T5+OioLrTnJi/TlRYtrzie5T12oY7Cf2vG16vp4R3AncfTiqHvffP7pf+YCTvfayq5ubKK3waL6XynKi+SZs3HtsXmnpGusvnzyvzX//4b3KCcFl7QZD60rC/nNfdrar5xf3n1/er50oZGZuDgrNzn97da86xJeOzs1vRVdjKT5IqvuuvSWHXgEL91QtM3pWvOuoCF5SXsOOpcoiwsOsL+/DQyhsWU7IidxRXjknuDmOu0bzKCf2CdG8S1lrqucbI/Uki79n0rybvet2xzf/4ku3+fdD9fdLLq9aVzNqp1nNj3Udb/76uzr/x8y1VcvPtsvF2rs3O/O+q4cO1LZz99d2G9tq/6rata+DSje6L7h3dL4xSN0YnFjxnurcxc0Vb34w361CfbBub6tBFR9L0SJyh1m4nZvfkQ2PitZTtzYnVl5r+X2nQecTNxX/4cX9q6f1b7h3L3qePxZt3c2+PVWwatv+a7JbvO8K6iR/23++m3er5fdi56kT/X3vKldt6+u+9f4fu+6z/oV8/FeraqUlJ9TE5QPjhurlq4eVUfvN5RHXr4pqgl+pUQuUnFCTVe7vEtSaq/Zb/bMF/OHC8rZ+eFjtSk4opZSKSk4opZSKSk4opZSKSk4opZSKSk4opZSKSk4opZSKqicnnv38t0oppc6hxudE+c86AbAG19fX/zeQnAA4I3ICgIicACAiJwCIyAkAInICgEguJ168eCEnAOjOiRd7cgLg3LVz4kWdnAA4a42cqMZDLirkBMAZ6cyJ3D/lBMDZaedE+zKUnAA4X74XC0BETgAQkRMAROQEABE5AUBETgAQkRMARLadE+8rGhOnXVDvQtszzNcBgFPaQE6UDMcni4pgoSdYOsDprSsnOj+ndw67vcEw02BdkhMAt8n19fWHISbIieC6TTw9ntLWmSW7Ke3hPreIYEGFLxnU/vu6eAUBTuDUOdEeoAs72jmelr8qt9yhj0s6MNWyRAWwBkvmxFBDx9DysbiqZFnx0hvP9saMnADWbF050RisczOkgrE4mKFkLA7m6R2+e4OhsD9yAliDdV136s2JlImKkqH8fV17zmMed/ZwpvYBTmld97ELNUbSkpBovLw9f/tVQePtp4LxfUT7hSsCg1wXTxwxTzBz7uWDmmVBC+TEIuYef43vrF9uBJ8kKq4LHgRtXmeKNTiXnEhTnMcs2z6U+CylByl9kdJnKd1J6U7lqcawe51/qlNhVLSzpzAnRiyR0zijnIDb50FKf5vSNyl9k9JXKX2V0t2u2dof0suvDpXPkJstd4ogJ7ZCTsA23EnpQUqvU/ompXcp/ZjS+5R+ltIX9ZOGQONCUGd4BENz/FTuqlFnGOQW7brTOskJWKO7KT1I6ZuUfp3Su/2g+aeUfpHS85Q+G97gkWNuyZ2MzutOwUnDoHMLFiQnYHkPUnqW0jcp/ZDSf1Y+Tf8lpT+k9FVKXxy9iPbwHV8Iil+em6H9QE7cAnICTuqz/eWjNym9S+nPrSst71P6WUpfjjppyMkN4qk+mo/OiXjE7zy3aC/apafVWiwnfPWIc3B3f5+5evmoUX9K6Tf5W9CTCG4blORE+Yf9zmdzjV+3ulGyCE5vyfOJ8nF86HAvIVjE4fLRu/rlo0Z9HH4Leiq5605H5kR8HtB5ASq45CUn1mYDOTFi0JcTjHAnpR+KZ/5sf595d/nor+GVk+vjbkFPaMT5ROd5QK7x3Dy9LeeuPrEGC/9uR/snK4KJJfNXn5pto3ELPd6P9Z0Ol49+yF8+atRfprsFfbz2yDt5TsTBUJ4Tva/i9E79/7OrjuC50bwzD4J1aM8gJyi3O404DKN36peP2veZg3o/wy3oqbRPI0quO5WcOlQb7Hy2pHE5sWYryon4vKHd9dz8wUug4XHBJaP4atJvZr4FPa3c+UT7cfufJU91XizqzYk4YFjcWnKiNz8a/Y7PS+QEvRqnEYW14C3oSZRfd+odo4NTilw7nQttPGgUazBvToz+mKbUiCo36DRiJbegJ3Fdf3DdmtJ+HLfWbqfRftyBeLmD9inzkRPq9lS5z1L6KqU/pPSxq52/rOkWNCxOTqjbU+N8kdLPUvpTpZ0H073B4BY4UU50/v0ETOLInDi4k9KXKf0mpV9N0Cm4PeQEmzdVTgCd5ASbJydgVnKCzZMTMCs5webJCZiVnGDz5ATMaoGciH9sY8SfUge//zFJ+7lG4h8UGdTUoH7m/kC9oPunU76pezdmbwtyAmZ16pyoDgclj3s1hpjJ2+9cXHl/StoZ1M8gWvp7f1rHbIfyFpKcgJkted0p+AhZOOq9r4jbOU1OxP0p6Vu8rHb75Us8vaD/nfOMXi85AbPacE4cZhvazkw50dufoW3mhtTc+DtocXHj7adyC42n554KOjZiveQEzGqZnMiNF/E40p6z/bi3nUHtt4e83CAY96dwRYL+l6zv0MWVLCI3/9DHgzoWT2yTEzCrrZ5PvO/S286gkatXe0yM+xO3cEz7x4/InYvrXG6uP0Ejk3QpICdgVlvNiRHtDG12quUOffmI9kesWtxIIyfG9S23iPLOywlYg21836lzfGk8O+5xSfsly8rNk2t/XD/j9nNzliw399Qx2/aY7RCvV4OcgFlt4+8nctM7X9XZzvuWwvZLltj77KD+DGp/xHr1zlzYn5KF5taidzvE69UgJ2BW/h67fyzbqKHrtd3tICdgVnKClPpOYlZOTsCs5ASbJydgVv6/p0opdb4lJ5RSSkUlJ5RSSkUlJ9R5FVBo0Ltm3pxoB8ZB+ff0x5m2nWOaGvr3B4UNFrbTnji0P0P7uexXp9az3+Nm411WstzR+6vzqfg4eZ853sq3z4iZj9/4Sx2Eacgq9B4MuZeMW9zBBnJi6EGcE8xZ+GYoXMroo6362pLHhQ0WthNPOeZxYT8LZx5q/ft9dJuN/VvSzqD91dl+75TDP3PTe42Y8/jtP+tBOMnS4/2Va2Ho9E7nkhNDD4LRB83QLg1dtRHt97aTmzN3XA59XNjVwpkH2dx+L28z3r+5dsqPq3b75cfJ+9bYXb7Wg4xoM9eT+Q7CEsH275ynZL/kWo6nd1p7TsQrU3JwNyYGT/XOn3vcfkncfuOpwlWLp+dmK28nnnLM4/LeNqYUbuRU35iNB71N5dovWa9B7be7OnSztJ8qbKq3zc7+d84fTGmsdW56b/cKN3Lv6pRv/0HttNerd7kl03NPtXvV2eFgZTtb6H22atU50bsa5dtx6Pbq3ejHPI7ljo/4uCnpZ0n7uYV2bs/y6eUdDvo/YjvH3chtnGC2I/sTdKO96eKNXN5+ydqVtx9MqXY7mD60n/G2nXD7BN0oWUTcz/LHgzoWTxzXVNuqc6J3NdrPlhw65e0Es5U/7uxPr9z8Je20l1tyVAUtD+3MkSs7bjv3NlXSz95tVf442PgjxO2XLKJ8U8Tt5zbaYXrjQXv60K7mtnOuzWD+oXIv71xEbqPF04f2s6RLhcpfsvaciFfmyOMpeHbQ8Tdu3zcOmt4ulbR5TDsTdubITh6znbe+38u7WrKs8tmOOU4aa3R4nJs+tLdD92+80BHbP94IjfUtefnofgY9P36lAmeXE70HVjD/VI+rU0r6P+J4GtRmbsoc00teMmI7vK9rN9W56GAjDO3D0O3cuR2C7pVv7WAjDOpn3H4wJbfNO/9ZstCgn50tnGD7dz41dDsP7WfJ/L0rNW7+DeREym+yqvacuZe0N1a7nd75U9duC6YX7pLc/EE7QfvB9ulc08KNMGJ67qncooPOtB+3Gxy93N75O7sRTO/sZLm4ncL+l6xsSfuF7ZRM7+xnbhHV2dqPOzsfr1e53s4H6zuonZQ/pHML7dwOJatcstEarW0jJ9i6ksN3ksZnXRBT2fpu2nr/O8kJbrnyD1NwpNt6sMkJACJyAoCR5AQAETkBQEROABCREwBEVp0TSiml1lNyQimlVFRyQimlVFQryoldPfv5b8t6BcBayAkAInICgIicACAiJwCIyAnYjAcp/bB0HzhDcgI24EFK/5rSdUpvl+4JZ0hOwKodEmJX/7B0fzhDcgJWqpEQu3q2dK84Q3ICVqczIXb1N0v3jTMkJ2B1Hqf08YhfWYBpyQlYozsp/aEVEh+W7hXnSU7ASj1u5cSvlu4S50lOwBp9ntJfWznhy04sQk7AGr2txMOvU3qW0nVKXyzdK86TnIDVeV0JiR9TupNSSunZ/gGcmJyAdblbueL0MaW7S/cH5ASsy4fKycTrpTsDSU7AqnxdCYnfL90Z2JETsBYPKiHxZ3cjWA05AatwJ6X/qeSE2xKsh5yAVfjObQnWSk7A8h67LcGKyQlY2J3KF2HdlmCF5AQs7HduS7BucgKW9KwSEl8v3RnoJCdgMZ9Xrjj9cenOQI6cgMUcfuzvo9sSrJicgGVU//T6wdKdgYCcgAXcdVuC7ZATsIAPbkuwHXICTu07tyXYFDkBJ1X9sb/HS3cGSsgJOJ3qj/19t3RnoJCcgNM5/On1j0v3BMrJCTiRx5XbEp8v3RkoJyfgFKo/9ue2BNsiJ+AU3rotwWbJCZjda7cl2DI5AfP6fH/FyW0JNkpOwLwOf3r9bOmewDhyAmZ0+LG/Xy/dExhNTsBc7lZuS/h9DrZLTsAsDn96/dH/zZSNkxMwi+/cluC2kBMwvQduS3CLyAmY2OFPr//stgS3gpyAiR1+7M9tCW4HOQFTerYPiddL9wSmIidgMp/vrzj9fumewITkBEzmrdsS3EZyAqbx2m0Jbik5ARO467YEt5ecgAl8cFuC20tOwLG+3v8+h9sS3EpyAo5y+NPrB0v3BGYiJ2C8w4/9fb10T2A+cgLG+5eUrlP649LdgFnJCRjpsdsSnAc5AWMcfuzPbQluPTkBY/zObQnOhpyAwV7v/2+mcA7kBAzzeUp/TeljSp8v3RM4DTkBw+z+9Prx0t2Ak5ETMMDuT6+/W7obcEpyAkrddVuCsyQnoMidlD64LcFZkhNQ5Du3JThXcgL6PXBbgjMmJ6DH7sf+fvT7HJwrOQE9fpfSR/83U86YnIAez1J6tnQfYEFyAoCInAAgIicAiMgJACJyAoCInAAgIicAiMgJACJygm24LpgSTwfGkROs2nXBg9xLdo87q/2SwjnjmXMvgU2TE6zddeu/qfW4PX8wj1MTGEROsA29JwGdc8oJOJ6cYL2CCzudYdA52+TXneDcyAnWrvO6U3DSMOjcIn5KTkCSE6xc7vb1IjnRewfbiQi3kpxgveIRP/fFp8b5R8k4fsxwLxK49eQEGxDcjs7dbGi/sHdAHzTziDlho+QE6xV/wO+8AHXMd5/KXzji0hZsl5xg7QpvRQTz9150ihdUnhO5LsGmyQlWLR6Fy3MiflVwbzwOiZIZYOvkBKuWu9mQMhmQJs2JkgzozSrYOjnBBnR+9ah3KI8DpnMp8TxHToSNkhOs3XX+837jce77srn7E8HXYUu+IJsLKrhl5ATrlbvnPPQcYr5bzUKCcyAnAIjICQAicgKAiJwAICInAIjICQAicgKAiJwAICInAIjICQAicgKAiJwAICInAIjICQAicgKAiJwAICInAIjICQAicgKAiJwAICInAIjICQAicgKAiJwAICInAIjICQAicgKAiJwAICInAIjICQAicgKAiJwAICInAIjICQAicgKAiJwAICInAIjICQAicgKAiJwAICInAIjICQAicgKAiJwAICInAIjICQAicgKAiJwAICInAIjICQAicgKAiJwAICInAIjICQAicgKAiJwAICInAIjICQAicgKAiJwAICInAIjICQAicgKAiJwAICInAIjICQAicgKAiJwAICInAIjICQAicgKAiJwAICInAIjICQAicgKAiJwAICInAIjICQAicgKAiJwAICInAIjICQAicgKAiJwAICInAIjICQAicgKAiJwAICInAIjICQAicgKAiJwAICInAIjICQAijZx48eJFIxXaU+QEwBlp50Q1GBr/lBMAZ6czJ3bZUH0sJwDOVPv+xIs69ycAzlrnfewgJOQEwHnJfd8pFxJyAuC8+F4sABE5AUBETgAQkRMARE6dE9cAbMrQkDg2J0Ys7wPAhw8fPnwYMYCwCDkBLGPy4YyZyAlgGZMPZ8xETgDLmHw4Yyaz5ETwUyFLH5nAWsw5sp2v+Jeaxpk+J+JeLn1kAmsx4UBG1eRRMXFO9PZv6SMTWIupRjHajoyKd+/evXv37vDPKXOipGdLH5nAWowbwih0TFTMmBMlPVv6yATWYsT4RaFpLz25PwEsY5IhjLbRIXE4jZj3fKK3l0sfmcBaDB3FKDHJ5aZT5ERg6SMTWIsRAwiLkBPAMiYfzhinfRrhfAJYhamGOY4kJ4CVmmqYY26nzgkAtuWonFBKKXUONTInlFJKnXnJCaWUUlHJCaWUUlHJCaWUUlHJCaWUUlHJCaWUUlHJCaWUUlHJCaWUUlHd5IRSSimVq/8HY9zWYgSXLYQAAAAASUVORK5CYII=" alt="" />

  有意思的是,我们可以直接将一个配置好的经纬度文件通过程序直接生成json文件,这是gpsdata.csv文件里的数据

42.123123,-71.321321,speed=
41.123123,-71.421321,speed=
43.123123,-71.621321,speed=
44.123123,-71.321321,speed=
45.123123,-71.321321,speed=
42.523123,-70.321321,speed=

  通过程序直接运行,在程序同目录中生成了output.json文件

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAg0AAAAsCAIAAABpFRx5AAADK0lEQVR4nO3cQXbTMBQFUC+ScZfAlA10AZ0zYSEMvAH20h2YUTnBtr6+FDu2k3sPA1dVpC9h+aVAGL79+Pj+8/fqr7f3X+M4juM4FIxf4g63F7P2oAWADtM0fTZ6e/9VCoJvPz6GfE6UHu7x8301KqqxAUCfR+fEcBMG3Y/yWTwICYD9HJATAFzINE1/WsgJgNciJwCIyAkAInICgIicACAiJwCIXDsnDvn8RPXzH0d9gOOQee/8KMwJPdlylp5+gWzuAjmReRw/LCqCSR8we+DAw5+f+iqPpwe81ThwHDlBq3PlxOqb09XbuhoMOx2GTE483rGVJGc/z3ZlPOatxhnGgaoDcmK8Masmbo9bllazZCz831ClKYKJki9pGn/8X7zAUhmZ/rN9mF201l/tPy5Ux6/WH9Qza1xe5yfqq6c0b2kf/l2X2pPjdJfatJ9Nk/IEHp0Tpfu+avV+zb8qf/bi60wBW82VWWPrcQ3GX/3WPXUG43evZe/9bC2pY97MdlX3P1PbVjVvuJ9c1JE50ar1Hs3f67cyc8WzZ87zhuewaUuD8ZvKqI4z28+gzlL/av2Zb3XsZ2au6vjJfa4O1TFOVWacjnXxxM6VE9WHxer5WX4Zd8jc6/ecz+rBS9aTP4d9PZMlbVV/dVsyq2jd/L79zHfeah9KL+kYp6nmUmPHunhi5/pzp/FLUHH3ERr/t+x5z/VqhTuNvyrfeXUfSlNvWH/TmLNS4yIz8+66mR31BO2lPslxhrV9u6fm5Lp4Yuf6e+yk2Z0anLfSy5f9g8NW6pw8Px3jJxcSr6u1/+q6MvWvlr1sHwrPr+7+yfblsLG+bdx2XaXOmXFW22+/LA2S2c9gHJ7Yuf5d7H72vr+vcn6qz4sjimIYdt7/q9yfnNOr5MSwxc8xx46/leB94vmLf1YP2H+/xXR7oZwAoIOcACAiJwCIyAkAInICgIicACAiJwCIyAkAInICgMg0TZ+N5ATAC5ETAETkBAAROQFARE4AEJETAETkBAAROQFARE4AEJETAETkBAAROQFA5No5Md6YNW47EcDLukBOlB76t3kgKgB2snlO/AVTxFy6s4p19gAAAABJRU5ErkJggg==" alt="" />

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAxAAAADjCAIAAACadWWAAAAgAElEQVR4nO2d73Nc1Znn+0/gJS/yYvul8yJVrgIyplS1jnZXk7IymcSDsrXeYdKOhoDpFQkRKBYyIEZKTBN5UEBgty3ZwqAIbKstE+TAkp4IBhTIejXDTEbg/OglOKTBkMgkyI0hVdoXt9V97/n5nHPP/dGt76lPUUY6Or/u85z7vc8995zM9PT09PT02uWagmlCUvz58vLyuigt7crWFsbWJ3as91+1PppdHdu2tCsrLKFSqSwtLS0tLU1OTnp/Wy6XvX8s7GQLKUsK6e/vL5fL5XJ5bGxseXm5zKXl5eXR0VHv31u2bOFL2L///o+uXNEOlGzE1IOs+CvZDyMqRN1Ngi3oOxuyEHULOzt35IdGy0vLvfmh3v6hLVu3rl2uZbdsGRqbmFtY6s0P5fuHMpmM9nIw9E6s7Jys7pyo7hir9E6s9E5W+2eqnaMrFi2UUZ7IL030VpcmlyZ7Z/ICC3RYiKKF+QnWYatL/evVidWl3trK6Gp5V7Wcry3lqws7aiv9lZkdERWiaOHM0qrHZHl1srw6UV4dW6iOLVRH56qjc9V6AyZXdg6V1y7X+mcqxKHLz6zmZ1b9/5DxtcfffvaNK34ymfUGzP8yePm/9vjbzFjVqjO1yuhqZWJ1ZayysK22MrS6lK8udFaX+murFW8Md/bPyZqUyw2vf3Jp8c3h6cXh6cXh4Y3/Lk4Pv5nb/ubw9sXh7fWf/GoxlxsWFrK4ffubHrnhN4eHmxfvk0trl2uN/5uefmL9k0vDw+JC1i7XlvP5P6+tffDGG6uvvfaHc+fe/+lPL77wwjvPP/+7hYXfzs9fOHXqraeeqr3zznI+b2qca5drinrpebRzFCUPk0E4a2kL8Zp6de9yfqw+mfj/TekOP6WHmZyBgoyr25vizxuCqbKRVlZWVlZWyp2Z9eW5hhOuDl1V7tTcxpaWlhjBRC+kv79/YWFhYWFhYmJidHR0dHR0aGgon8/39vbu3Lmzs7Ozs7Mzn897ebJZgeoiCiZ+ZKzNVGb9ay0umEIalbqF2zo7+4dG5xaW8v1D+f6hrVu3rV2udXZ2Do1NzMyVvR+aCqadE5Vdk9WdE9XRuZW1y7WhmeUdY5UdY5WhmWWLFipYGNtVHttZWRib2HW1xZ/TC1G0cGxyqXe0vGu0vCM/syM/s6N3srrUX6uM1Zbz65XR6sKOpZldda2z3F+Z7BQXMrPUO7bUO1buHa1jWoiihQvLtYXl2tzy6hynnPpnqmuXazPl6s6h8o6hhZ2j5R1DC8RxCyOYTOEFky/VKnNbqws7K3PbVldm/L/QCqZpTzA1/ju9/c3h7W/mti9ON3+uEExNtbR9+/onl/xVr12uNX4yPf3E+vq64i7+L9/4Ru3ddz2p9N5LL7334osXf/KTd3784+pzz1Wfe+53Cwu/W1j4U6Xyf/fsMTXOtRQLJrs84btDnJPpkzOQkaGPoPU1kEWYyruurk32rg9dtd6fWe3PVHozZd1NQhBq2pXlChFHmPL5/MzMzMLCwujo6NzcXHlpiWFubm7Lli0LCwuTk5PhBdOaTydZm+l0+gRTGEugF6IuSt3Crdu2bd26bcvWrVu2bM1ms1dfnV27XNuyZctVV12d8SX6VZgrL3eOVUcXVrcO1WMVW4dW+meqW4cqMwuOBdPa5drc6M7J3uzCRK/dnxMLMWphtZyvVcZqy721ylCtMrS6MrS61Ftd2FFbylcmtkVUiErSbcSThuaqQ3PV/pkA9TxzFbpU8mgKpsnV/KSDCBNRMDHisjyzo7rQOTexc9fQzM6huZ39TcZmlmRNqkeYfrU4vTjsxZkWp4cXh7cvLg5PTw+/OWwgmBb/E6uW1tfXF3+1uHa55qkl7x+Ku/jvnnnmlw89dO7v//5nX/2qkFdvvPH/9PZWpqYsjHOYltTXmjL/aGczJ4WE7w6xGcT2AAWZNZpM1l4VxR/KBFNlbmypd0u1P7s6lKn0Zso7MpWZUWK7G6Gm6tzEUm+2WUintJCxsbH+/v7e3t7eiaXVWq1BdbVWXa1VVmu1Wq13YimbzXZ2dg4NDfElmN4Fw5up4q9kvzK6OsJfUbrpyvHsjCqMHLFgbG5lx1hldGF1x0Q121/Z0l/ZMVbpn6numqhu7RdrpphbaIGhYOqtVSdry/21laFaZay2MrpazlfLvbWVURPBZFZI+DEcnaO+jDPFbYTJT61arsxtq1XLpk3K5bZ7gkkI8yuZYPIYHh7mBdP6J5fqP/T+oXwlF5L0u0/KgWCKiEwMI1itVpclaWmiv7zr6nJnprzr6uWJfnqZjVDT0tJSdW6ivCtb7syUd2Upkqt3YkmB4g8t3DikjTqxe9NCiN1M0PHin0/zkyvZ/MrV+Urn6MrQzPLQ5HI2v5LNr/SOuY8wpXAMKzOd1bldlbmddWZ2VCY7KxPbKhPbVoauiqiQNI+hVjCpw0sqwbRaqa1a6rxcbnsuN6xheFitltbIMQ8IptQCwRQRxktfNzObxI3T3020EC1MlugiTGAt3ZcebGYgmAAAwAwIJgA2IRBMAABgxtcefzs8ifcCAGAEBBMAAAAAgAYIJgAAAAAADZl33r0IAAAAAAAUZC4hIUWThJtvIRFT0lcPCQkJCSmQIJiQIknr6+sXkEKkPXv2JH0NkZCQkJCaKeP8adhJgYmn9utRzOnChQsfn+gA1kxPT0MzISEhIaUnZdw+Da+3S1yh/XoUZ4JggmBCQkJCarOUWXSRvMndu006KTDx1H49ijNBMEEwISEhIbVZyji5QbafvGi/HsWZIJggmJCQkJDaLGWc3CDbT160X4/iTN64JW3brZ0gmJCQkJBSlTJObpDtJy/ar0dxJgim8AmCCQkJCSlVKePkBsnLixunLvz34ttfePi3nx//7V8+GODz47/9q4kLfzd54Y4TbzqpPYrUfj2KM/GC6f7jr+w7fO6mA6/euP/Vv/1ugL+7/9WbH3ylMP3ThedfTMoNUpggmJCQkJBSlTKK294LL7xw9uzZ+fn5ubm5kydPnjhx4qmnnpqdnZ2ZmZmenp6fn2/k5OXFDcW373r24/0v/Ll4bv3e52rFc+t+Hnjhk5t+cOmGQ29FetveDD2KM9FHjxdMA4fPvfj62q/evbK+vn7uF6vMHgRvXfzo0A/fuvPQy0m5QQxp4dji0wdOzo8cO33vkdNDB08PPlLa+/DcHQ+e+kbhxM33zd53nMkPwYSEhISUqpRR3CB/9KMflcvls2fPnjlz5vTp06VSybtTPvnkk8ePHy8Wi42cvLz4/Pcv3H7mo33PfVw8t37D4YuMvPiHH3/cf+by9fsr0dzZ26pHw8PDw8PDzou1SPTR4wXTjYVXTv/sg5fPr62vrw8c+Q9GMP3b/7v8w1d/33lnOSk30KZMJuwWr08/WPrhwR+dGTs5/53H5+87dvqeI6f3HS4NPjLX/+DJ/HePfHWIyQ/BhISEhJSqlFHcIOfn58+ePXv+/Pnz58+fOHHCiyV4//vYY48dPny4kZOXF//lwIXbz3y071mxvNj37Me3nPjTdd/5VTR39nbrUUoEE330eMF0w32vnH71g5ffEAuml99YO/rjd66//bmk3ECbwgum+e8cf/rAKa+/pcGDpTu/P3f7mPe/J/eMHtl9N5MfggkJCQkpVSmjuEHOzc2dOXPm/EZq3B3Pnz8/PT195MiRRk6BvBi78M35jwae+ejBl//8jy998uDLf/Zzx9OXe2c+uO6+uAVTi/ZILZhik1P00eMF098Mv1J65YP//a8fvPfBlYuXPnr/j1fe/+OV9z+48t4HV9774MrZc79/+MyFbXtCCSY7TRNeCRHT/L2TZ777eEMjljbU0vr6+sk9I1O99zL5IZiQkJCQUpUyihvkyZMnS6XSqVOnzgfTsWPHpqen1fGYzu9duK300ZcP/+GLj1784sGLXype/FLx4l89+u4XHnnnC4+889cH380d//21w3ELphbtUUoEE330eMG08+5XTrz0wTeP/HrPxMqeR1ZuK67cVly55eGff/37r339+6/lH/33A6d++Re3tLNgOj10cP6+o/N3H2Gia3M333Nqz/Cxr93D5IdgQkJCQkpVyjC3Xv+KmSeffPLUqVMnT5586qmn/LGEY8eOHTt2TL3ip/N7F24r1b5y7E9+/ubI6s7DFz2+evz31w7/QnZvHpYkYQbFPb7VeyT7CeWvFMPCl8yUw//DaPREgumnJ15aHZyp+uk/+ubtkyse3zv1y7+4ZUFqpplMQ9k0/s3/kPmV6V9Rapf9lbbY03sfnr/7yPzdh08PPtqMM906XNpz99wt9xzdvY+pFIIJCQkJKVUp47+DMv+YmZl56qmnTp48yUQUpqenjx49eujQocbf8vLicw+89b9Orfm1xQ1Tl3Yeea8hL/7n9HvXDr8hu5fT/6HWBC3dI2Jm5g8pQ0Sv3f9z+ujxgulL+5ZmFt/3q6WB47+5feqNhmAaffL1z95yRmyjPiEi+8clLlZk91dSP1H+CaWu0h0HTg8dnN9XZCJMZ/J3n75l32O772LKhGBCQkJCSlXKyO67i4uLx48fn52dbdwX/f+empp69NFHGzmF8iJ/au2uH115+NWPH37lisdDr1x56JUrD7/68bd/uPY/Ji/K5MWiKI7CN1IbR2n1HinyKASTMA+fgdhC/0/ooycUTE/85P0XVz788MrlP330occfP/rwjx99+OGVy88vvz98bOWzN7eGYLokijlp/1H65v2n9z7U1El7DzT+PX/L3uO5AaZGCCYkJCSkVKWM4vZ89OjRJ554wrsj/uAHP5iZmWn875EjRyYmJhp/y8uL7Q+8tefU2r5nP77t7NLNTz/vp/+5c3uf+fArR353zfDrxNs5JQyjKKdFexRnhElYGvNb+ujxgumL+5aO/eT9l99YO/HzA0fO7fXzzPnD//SvF+86unzdzfNiG02fYKJX0RRMt43OD9RF0pnB8ae//b0f3vnd+v/efOfjX/0WUzgEExISElKqUoa5WfrvkYcPHz527NhxX/JevkxOThaLxYceeqiRUyEvBp77t2+e/Zmfu55//dvPfHjDobevufc/FHd0f2OEYRU+j6ycFu2RrJumRVFGRla7/0/oo6cQTM/9Ymbu54/4eaEy/+N/uThw6Nx1Xz8lNVNumZFslZLsf+l/JWuAohCmhf7fNv5xKn9P6fbvnh4YOz0wdvrOB+bv2H/mWyNP33b307fuPX1T/7EbIZiQkJCQUp0yshv84uJiqVR65JFHDh48eOjQoYMb6dFHH52YmHjooYdOnDjRyMnLi/869lZf6cOR8sf3//M733nxt34eeOniXQt/uuHQhevuWxHWy9+zhbd8i9R+PYoz0UePF0xfGX75yX9+999/s/brP7z2+nuv+vnNpZUXXqsOHPzp9bfOubRsp5+/hS/t1NgPjt5897H88LH8fdO3Dj926z1P7Bl64uuDj/fe+Viu/wejjzH5IZiQkJCQUpUyTm6lvLzYOfGbv/zHNzvur1y//9fXj3r88vrR8x6f/YfXr7t35T/vF8uLxWDUhI98xJDar0dxJl4wfWv8pb8dfeG/ffufPjfw/Oe+4fHs577xjEdH/vT1X5/7woAzwSQMLyVYjkWCYEJCQkJKVco4uUHy8qLVU/v1KM7ECyYk0wTBhISEhJSqlHFyg2w/edF+PYozQTCFTxBMSEhISKlKGSc3yPaTF+3XozgTBFP4BMGEhISElKqUWUdCiiBBMIVMDcmOhISEhJSGlLmAhOQ6JS022iclfSWRkJCQkOopM42EhISEhISEhKRMmT1ISEhISEhISEjKlPnMNdfdesPn+f9+Ovupzz75++6OawAAAAAANjkZoVr6zDXXQTABAAAAAHggwgQAAAAAoAERJgAAAAAADTYRpv1TU+XSVLm0746kW9/ky/mTJa9VU+WpfPLtAQAAAEAbYRth+nL+pLVgummfe03z5fzJ0oH9X05+QAEAAADQfmTWMwL0a5ggmAAAAACwacj84Q/vM6xnMogwAQAAAAA0EAsmNsJ0075yY4VQaap4k0Qw+RcSidYS3fHAlL8cHyKtoyuNywzBBAAAAIBI0EeY7niAWd+9q1iaKk8dYARTbu+Bupba+MkdD0hUDiHCZFCaBwQTAAAAACJDE2HK7T0glCn7pyhfye0qCkWM5Ss5SWkeEEwAAAAAiAx2uTcTYdo/FQjzNLlpHy+YRG/c7AUTtTQPCCYAAAAARIYmwlQsSQQTu4ZpV1GwM5N1hMmktGZ7IJgAAAAAEAmaNUzECJPkzZ2lYDIrzQOCCQAAAACR4WYN0x0PTJUf2MXkye09YPdKzqw0DwgmAAAAAEQG7Su5gL4RfSV3077gR23eOzXVfgH+wNX+qWBOo9KaZUIwAQAAACASSDt9ex/5c/swTZVLvlBQcK+mk3v/sil0uHARu8cSn8GotA4IJgAAAABESObWGz7vKSSzs+TSBgQTAAAAACIj85lrrvPewTGaCYIJAAAAAMCjnSJMtENUAAAAAAAMaZcIEwAAAABAZLRLhAkAAAAAIDIQYQIAAAAA0KCKMAEAAAAAgE9nP6WKMAEAAAAAgE9nP4UIEwAAAACABkSYAAAAAAA0GEaYegbKpalycbf0V3UKgx2xdqOrr1AuDeQSGsTBotfruBrQsXu2NFUuTY33CDN0j/tOlZHkMcIrUH1NiZUGsokNKclKdSRq5G7ZXC4jY8OVeGb7rhX9CcUsiRDNku7Oxi7joFK/R4x0h78izs1yw9IaRG1yG0MXZp5JDaH91K31EofXoZOyGEWYuscpN+CO3bNO2tozQLc5vZuZlGZDx+7ZuGb/weJUeaR7sCi6Fh27Z/1zfc+AfOrXkxtpGHr3uOKa0ir1SvO3OTcicMVEKrW63OkTTHAZY8Q2NlhkbYlqljSoZmli5Nq2ua1041fNP8+NONBMbgXTYDEB4VIXGS7kYyqw9lOn1ms6vF19hSguvUmEiXiTSEIwxV2auNdxzP6NCUUomPiJnpnUbFGZcphKBX+bcKU0Wl8wxV2aeAwTF0yyhikurgPBJIQ3S3MjN26bfaWiyyd+ikvpdYwKCKbGOERhvdThdXPjYzGJMEEwaXodw+zfDPJJBBPfBifzu1q72FcaQjBFVCkNCKbwpFUw6Z5N4xRMpkbuRDCRKu3qK/A3LeEPEyMhJ/VCJmFnmPRgL5gisV7q8EYkmBKIMDHrBri5qRGj4+CKJawpIZXWaJLP25svv/kpIFDv1HiP2KrYqpW3n3p1yjz+oDf1Yc7NrGE4EdMq1b0dS6RSV3UFF4uwNQbexPuWWUjKDNjbQK5pWvX8cBmHeK+8lVfW/W2YapZOo19hKs2NiG5a1iJbb5YGLiM1YEHb1H7KGQbB3rr6Cpr1OswdcKS7q6/QGMyAa/NeI76IepehehbNTy1xYb364W12pPUjTHxvcyPyVeR039O2jVCa8PGIfzHPzTLd46WpcrHAWBU/GXX1FaR3xKYLyXsRtACiYHIQTan30WAiVlfanOw0VySRSmmo7a1ngHVp/ifZuk36my20ENaQegbKpcKssLNwGTdXVrs61VmNpmapc2eTlxrhKpUKppB3Ka1nEVyGVFSW7KfN0mj21jOgm8YDv61LmYDLdI+XCuMjBYHXaDyLNodQs3F+Kv9IQvPIJzckptd6z1IPbyBbshEmYguMQxqSYUrl7C8L1w8WubuaoQrUPb6wK+4pgkn3rBz6GoWq1PNGN+8+3FVKQ2Fv0gcyrjuiVZDsfUhoMMxqSnVmiy6QS0u3y1ihn+WiiDCRzJJg5EZtC1VpYoJJ6zLEouh+6h+K8PYmGiKuC9JLkxvxTftEl6Flo/qpLa6tV0c0L2SJESaT7/R0DRXFS1tGMEllCvfBiPyzZJuryD+1awWTO7Vk0GzTSpX5E6mUhtzeFMs4KGKIudAyQxI/q8FlAoVLn4MVjkP41CvCNUyKqmlGa7OGya7SBCNM1Eumfddh1DWHsMYpXOsj95qNESC6DDEb0U/tiMh6SePs9IEq5giTJ7z49RytIpjkdhx8XuE2/6DO1zKkBYqtsHvc8apDiilbVaoyqkQqpSG3N8Vsy87shNlfNos5WEHS7i5jBWXnlKgEk9ws6UZu3jbbSh2vYWoQl2Ay8NOoEbxjkl9H3wgQXYaWjeanNq/korRea0OyJdY1TJKgXwsJpvCPy86QR5icqyX5NQpfaSjBFEWlNBBhknc2tS6jh2QYMQsmIyN3JZj0lQoncwdfyW2GCJP+KoSMMNl0J5oIU8TWazCkboj1KzmhZUtX7aVy9qe+6DX/ssD0Bbli40r64zh5I1f9HpJ2MQD7V3IRVOp9kcAvkpDU7mINk3b23zxrmKJ3GS200ILRwmqDHgnM0tjIXbySo1bK1yW9zbvxrKxLwZTQGibJEIkEk34NE9FlaNncr2GK3npVEASTgVluEO9Xcuw3CI1POkX5ueEeLMrXUdH2MtCUxg2xcI8s7rM+8Sc/YiEosyHzT34Egkn8iYfcCn3xVfvXEMRKvbq4ZViW2wpEU6nBhKhfmhqsQnjdabM/a28du2dlX8nBZUJBO8mAMq2rPYtolqburP5tFJUGDVghN116livBlCX7KXtNw9hb/ZYXrIIPwwi/khP0lOgyxGxEPyXh1notIAgmCwXsKMKkerUp+DKowWzftU3ZxBs9t1+FZaWU0pqGFWges+GNMNvGZhVcsYIWSg2CevHkvWBaZVCpxLDk+/E08xtVyhYo+fom/kr9Ayu9ZRrZG7uuU/AsHvQCpnyFvRUGO9RfBsFlrFDOsBSzpHsWxSzpRk5vm8NKBfmj9Sy6yzBbKykNWOOnzu3N0wRsC6XCgmmeVBea+7IkG9VPdURhvWZoBZPWLEVEcJYcAK2INzelZ59iJalY8QMAhZbyrHQQ2Tq5TYP+LDkrszSJMDXqaItzmAHwkxvRPF+mCkf7kQIQOa3lWekAgink6OlNzs4sjSJMALQrgl10U4vbE90BiJJW8qzUAMEUwwjbmKVhhAkAED/MUgaEeAFoU7g1PXg0ShGIMAEAAAAAaECECQAAAABAAyJMAAAAAAAaEGECAAAAANCACBMAAAAAgAZEmAAAAAAANBhGmBQbVwa+fI57D4lkd6axOGgzFPo93Uk7d5GhlBbY7F/XMMrn8YlUqiNRI3fL5nIZGfJDOST7grr1rEAbJAZMNHJi29w6YOM6KkbMDOdm6W9hLCa3McJtsfeHCz8luoxRNgema4dRhIl2NArxjF4tJkev693M6CB3C8zPWrfGO2BccPiubw+P8R4HW59RS+vYPeufLnsGhLOnVxp71qP8uKs4K7W63OkTTHAZY8Q2xm+k7tazmLpk7mxk5Nq2OXZAbpS8joQcDbeCabCYgHARnj/dwtj6qZFZ0j2LOLz6o1GsMIkwEW8SSQimuEsT9zqO2b8xoYhn2CZup3VVaYJjOggnRUv/NuFKabS+YIq7NPEYJi6YZA2L6Ux1tTubG7lx26wdUHRDStn+1Ak5KQQTB9EwXAom+u3ACJMIEwSTptcxzP7NIF+aBBPfcWrtIQRTRJXSgGAKT1oFk+7Z1KFnadzZ3MjjE0zC4591k1K8JOSkXsikfY56TJlgog5vRIIpgQgTs26Am5u4veHlq0YIa0pIpTWa5NOtzZffvJgNHlUx3iO2KrZq5e2nXp0yT26k2Zj0CCZrU9G9HUukUld1BReLsDUG3sT7lllIygzY20CuaVr1/HAZh+heLTnzLBN3JhqeWdvCOGBXX4EbpRAjozdLA5eRGrDAVNR+yhkGwd66+gpl9doV5g440t3VV2gogIBr814jvoh6l6F6Fs1PDXEpmPTD2+xI60eY+N7mRuSryOlTobZthNJEU0BgUmv+JHAlusdLU+VigbEqfjLq6itI74hNF5L3ImgBaRZM6hBOc7LTXJFEKqWhtreeAdal+Z9k6zbpb7bQQlhD6hkolwqzws7CZdxc2Vg8y8ydm9mUz9YmLzVCOyDTZv9dP9z4Kz2L4DKkorJkP/UZBsneegZ003jgt3UpE3CZ7vFSYXykIPAajWfR5hBqNs5P5R9J6MSuM8GkGd5AtmQjTMQWGAdCJcOUytlfFq4fLHJ3NUMVqHt8YVfcp1Ywkdd+et7o5t2Hu0ppKOxN+kDGdUe0hpd90yE0GGYtsDqzRRfIpaXbZazQz3JOPMvUnTf6qzFyo7aFdkDduwIbCI8iGpchFkX3U//4h++myMC4LkgvTW7EZydEl6Flo/qpDU4FE5FoXsgSI0wm3+npGiqKl7aMYJLOa0E3kPqwrU3wT+3pFEymX8oo8ydSKQ25vQmtqHERtWKIudAyQxJHGuAygcKlz8EKx+EdzU17dLVoBRPNaG3WMFk6IGc/bj5wI0SYqJdM+66D6KfOYY1TuFJN7jUbI0B0GWI2op9akYRgaoyz0weqmCNMnvDi13O0imCS23HweYXb/IM6X8uQFhhabdCglNY9brHUUWVUiVRKQ25vitmWndkJs79sFhPXApcJC2XnFAeeZejOdCM3b5utAwplioNF33EJJgM/jRrBOyb5yPtGgOgytGw0P03DKzknhmRLrGuYJEG/FhJM4R+XnZGyCJOVcOHGLQWV0kCESd7Z1LqMHpJhRPLxvNydjYw8VsEk3BEq2u9P2yPCpL8KISNMNt1ptwhT8muYQgsmoWVLV+2lcvanvug1/7LA9AW5E8FE3shVv4ek3ZNluDcCjiv1vkjgF0lIanexhkk7+2+eNUzRu4wWWmjBrWc188s2rjQx8vheyQmXeAdW2AQzO/CsrEvBlNAaJokSEgkm/RomosvQsrXbGiaCYDIwyw3i/UqO/Qah8UmnKD83WQwW5euoaHsZaErjhli4Rxb3WZ/4kx+xEJTNgOaf/DgQTL74qv1rCPF3JVx+ry5u3YblV83RVGowIeqXpgarEFxAgLAAAB9hSURBVF532uzP2lvH7lnZV3JwmVBQ3seJzEwydEYvEwXuTDRy4m/dOqBouBQxG5ee5UowZcl+yl7TMPZWv+UFq+CDiMKv5AQ9JboMMRvRT616nUbBZKGAHUWYVK82BV8GNZjtu7Ypm3ij5/arsKyUUlrTsALNYza8EWbb2KyCK1bQQqlBUC+eshfyHXSUEkHyW0ppzFCoe8oWKLoEiVTqH1jpHc7I3th1nfwaBcYLmPIV9lYY7FB/GQSXsUI5w7r1LMoI042c3jZXDig0Y+mFcONZdJdhtlZS9lfjp87tzdMEbAulsphpnlQXmvuyJBvVTwkQDcnUs6hoBZPWLEVEcJYcAK2INze1yIEGqVjxAwCFlvKsdBDJOrlNhf4sOSuzNIkwNepoi3OYAfCTG9E8X6YKB6e7ABALreVZ6QCCKeTo6U3OziyNIkwAtCuCXXRTi9sT3QGIklbyrNQAwRTDCNuYpWGECQAQP8xSBoR4AWhTuDU9eDRKEYgwAQAAAABoQIQJAAAAAEADIkwAAAAAABoQYQIAAAAA0IAIEwAAAACABkSYAAAAAAA0GEaYFBtXBr58jnsPiWR3pjE9aDMsmj3daecVGEDZByxQqXw7eHrbEqlUR6JG7pbN5TIy5IdySPYFJe2JF6YNolMyKEZObBvRF2L3rA2cm+WGpcX2lf7GmLTF3h8u/JTkMv7LpNySlzK8ETjpBkYRJtrRKMQzerWYHL2udzOjg9wtMD9r3RrvgHHh4bveHh7seYq2DWvsCDLeo9xIrWP3rN/KewaERk9sWyKVWl3u9AkmuIwxYhvjN1KnmqUhqtORs2ZGrm0b1RcS9Sy3gmmwmIBwEZ4/3cLY+indZRh3825wIYdXfzSKFSYRJuJNIgnBFHdp4l7HMfs3JhShYBLi4hgNlcULyiecFE1oWyKV0mh9wRR3aeIxTFwwyRqmuLjOBJPWDs2N3LhtfBUJe1Z81zEqIJg4VGYpUjaamZ80vGSjNcIkwgTBpOl1DLN/M8iXJsEkPMacZAMhBFNEldKAYApPWgWT7tnUjWDq6itojdDcyJ0IpkQ9yyEJOakXWUnRODgYxggFk/AcccXdjTq8EQmmBCJMzLoBbm7i9oaXrxohrCkhldZokk+3Nt+q8mI2eFTFeI/YqtiqlbefenXKPLmRZmOIgsnNGyjTiZhmKrq2JVKpq7qCyzvYGgNv4n3v7yVlBuxtINc0rXp+uIxD1G8EHAkm20KcRr+ovhCDZ+nN0sBlpAYsMBW1n3KGQbC3rr6CcuEXdwcc6far54Br814jHna9y1A9i+anhugiTKy76fJTlga1R4SJ721uRL6KnD4VattGKE105QIapfmTwJXoHi9NlYsFxqr46aOrryC9IzZdSN6LoAWoBVNzQnFzOzGbiNUPmuS2JVIpDbW99QywLs3/JFu3SX+zhRbCGlLPQLlUmBV2Fi7j5spq11aHrnHjJuS/jVFiEroQDqltpr6QLs8iuAypqCzZT32GQbK3ngHdNB74bd0GAi7TPV4qjI8UBF6j8SzaHELNxvmp/CMJndjVrGHyj7km+Koe3kC2ZCNMxBYYB0Ilo5nK2V8Wrh8scnc1QxWoe3xhV9zTIkyexTv5UI56TXUP6PS2JVIpDYW9SR/IuO6IltOyAWqhwTDLctWZLbpALi3dLmOFfpZzIZh6BsqlgfGRwA1Ga8MEIzdqG8kXUuRZWZrLEIui+6l/KML3UWRgXBekg5kb8U37RJehZaP6qQ06s9S9dLIhmheyxAiTyXd6uoaK4qUtI5ikMiXoBlIftp1t+ad2ozVMoVcgGixiMKpLmT+RSmnI7U1oRY2LqBVDzIWWGZL4oR8uEyhc+hyscBze0dy0R9w8/sapXOuqN1qbNUyaL5JS41n1cdO5DLEoAz91DmucwkVjcq/ZGAGiyxCzEf3UCu33zoHfOvtSUrELki0xR5g84cWv52gVwSS34+DzCrf5B3W+liEtkDI9RW3xvsExnmhUbUukUhpye1PMtuzMTpj9ZbOYuBa4TFgoO6c4E0zCb/VFtdON3LxtUl9InWfVy3ckmAz8NGoE75jk19E3AkSXoWWj+WkEr+SEo00PB1gaki2xrmGSBP1aSDCFf1x2hoFJxSGYrKZXTdsSqZQGIkzyzqbWZfSQDMPVom+iYDIycleCKY2eVS+/DSJM+nELGWGy6U5SESZh8xxcguTXMIUWTELLlq7aS+XsT33Ra/5lgekLciev5Mgbuer3kLR7ILB/JRdBpd4XCaTlt67WMGln/82zhil6l9FCCy0YLayW9kj43mGwGCzZ2MhdvJJLrWdlXQqmhNYwSZSQSDDp1zARXYaWLak1TMIl3pJQqwkEwWRglhvE+5Uc+w1C45NOUX7Ob1W74tL2MtCUxg2xcI8s7rM+8Sc/YiEom4zMP/kRCCavEG6pk9RufPFV+9cQ4u9KuPymbUuiUoMJUb80NViF8LrTZn/W3jp2z8q+koPLhIJ2kgFFlNA8KygvuG+giEZO/C3RF9LvWa4EU5bsp+w1DWNv9VtesAo+nif8Sk7QU6LLELMR/dSq12qj5Vob/pUoQTBZKGBHESbVq03Bl0ENZvuubcomfoy4/SosK6WU1jSsQPOYDW+E2TY2q+CKFbRQuaiTcvF0vWDX1Gu/u5E/B8v342nmZ4ZC3VNK2xKp1D+w0juckb2x6zr5NQqMFzDlK+ytMNih/jIILmOFcoalmCXds4TFMheUbuT0tml9IcWeRXcZZmslZQs1furc3jzpwLZQqlCZ5kl1obkvS7JR/ZSAicsEB8SJR2sFk9YsRURwlhwArYg3N7XIgQapWPEDAIWW8qx04Oz4nU2L/iw5K7M0iTA16miLc5gB8JMbkTyZpZJ0nUEBgJzW8qx0AMEUcvT0JmdnlkYRJgDaFcEuuqnF7YnuAERJK3lWaoBgimGEbczSMMIEAIgfZikDQrwAtCnc0h88GqUIRJgAAAAAADQgwgQAAAAAoAERJgAAAAAADYgwAQAAAABoQIQJAAAAAEADIkwAAAAAABoMI0yKjSsDXz7HvYdEsjvTkI+wdQRxT3errd9FUPYBC+xtL6+RvgV+IpXqSNTI3bK5XEaG/FAOyb6gpD3xaBDNkmjkxLa5rtTvES42W3JulhuWFttX+htD1xZ7f7jwU6VZWjpg+HuHJUYRJtrRKMQzerWYHL2udzOjg9wtMD9r3RrvzE7B4btW2RQ0dgQZ71FupNaxe9Zv3z0DQnP3SmPPepQfdxVnpVaXO32CCS5jjNjG+I3UqWZJg2qWJkaubZvbSjd+1fxz6SG4JrgVTIPFBISL8PzpFsbWT2lmSXVA0+HVH41ihUmEiXiTSEIwxV2auNdxzP6NCUWthIjZyKgmYoFxE06Klv5twpXSaH3BFHdp4jFMXDDJGqY+XD2SS8+bpbmRG7fNvlLR5XM028RzHaMCgonD0CyVF446vOTbgREmESYIJk2vY5j9m0E+5dxEzGZUr8KChadPk2wghGCKqFIaEEzhSatg0j2bximYTI3ciWAiVdrVV+BvWsIfJkZCTupFVtrnqMfYBZPaAanDG5FgSiDCxLy25IaG2xtevmqEsKaEVFqjST5vb7785qeA4FEV4z1iq2KrVt5+6tUp8/iD3golRMxmgstHhOD4uHtcdlOpq7qCi0XYGgNv4n3LLCRlBuxtINc0rXp+uIxDvHfZyivr/jZMNUun0a8wleZGRDcta5GtN0sDl5EasKBtaj/lDINgb119hbJ67QpzBxzp7uorNAYz4Nq814gvot5lqJ5F81NDzMxS7YD64W12pPUjTHxvcyPyVeR039O2jVCa8PGIfzHPzTLd46WpcrHAWBU/GXX1FQhr3+S9CFqAVAkRs5lhbPGKJ4DmZKe5IolUSkNtbz0DrEvzP8nWbdLfbKGFsIbUM1AuFWaFnYXLuLmy2rXVzmo0NUtdcJTUNieVSgVTyLuU1rMILkMqKkv202ZpNHvrGdBN44Hf1qVMwGW6x0uF8ZGCwGs0nkWbQ6jZOD+Vr9HWiV2yy2gdUD28gWzJRpiILTAOhEpGM5WzvyxaOFjk7mqGKlD3+MKuuJcoIWI2UwwsXveAHmiqq3cf7iqlobA36QMZ1x3Rclr2PiQ0GGZZrjqzRRfIpaXbZazQz3JRRJhIZkkwcqO2hao0McGkdRliUXQ/9Q9FeHsTDRHXBemlyY345nOiy9CyUf3UBhOzdCV0onkhS4wwmXynp2uoKF7aMoKJGNeR+rDtbMs/tQtbQsxmjsHyIKNFDMr8iVRKQ25vimUcFDHEXEGZIYkjDXCZQOHS52CFRxA+9YpwDZOiaprR2qxhsqs0wQgT9ZJp33UYdc0hrHEKF43JvWZjBIguQ8xG9FMrDMzSybeWgXF2+kAVc4TJE178eo5WEUxyOw4+r3Cbf1DnaxnSAjl5RMlmDsXiu8ctljqqjCqRSmnI7U0x27JzAWH2l81iDlaQtLvLWEHZOSUqwSQ3S7qRm7fNtlLHa5gaxCWYDPw0agTvmOTX0TcCRJehZaP5aeSv5GhbF4U3JFtiXcMkCfq1kGAK/7jsDGLoKK4Ik5Vw4cYtBZXSQIRJ3tnUuowekmHELJiMjNyVYNJXKpzMHXwltxkiTPqrEDLCZNOdVESYHC48Sn4NU2jBJLRs6aq9VM7+1Be95l8WmL4gdyKYyBu56veQtJNl9q/kIqjU+yKBXyQhqd3FGibt7L951jBF7zJaaKEFo4XVBj0SmKWxkbt4JUetlK9Lept341lZl4IpoTVMkiESCSb9Giaiy9CypWENk+v3cZpmG5jlBvF+Jcd+g9D4pFOUn/PbwaJ8HRVtLwNNadwQC/fI4j7rE3/yIxaCssnI/JMfB4LJF1+1fw0h/q6Ey+/VJXiBaLWtQDSVGkyI+qWpwSqE1502+7P21rF7VvaVHFwmFMTXAYTZX+1ZRLMkGjnxt1FUGjRgxd3OpWe5EkxZsp+y1zSMvdVvecEq+Hie8Cs5QU+JLkPMRvRTq15TBs3d+zjhxeWwUMCOIkyqV5uCL4MazPZd25RNvNFz+1VYVkoprWlYgeYxG94Is21sVsEVK2ih1G6oF4/QC3o29XOwfD+eZn5mKNQ9ZQuUfH0Tf6X+EaPoS3297LpOwbN40AuY8hX2VhjsUH8ZBJexQjnDUsyS7lkUs6QbOb1tDisV5I/Ws+guw2ytpDRgjZ86tzdPOrAtlCpUpnlSXWjuy5JsVD8lYOoyjl+iaUvTmqWICM6SA6AV8eam9OxTrCQVK34AoNBSnpUOIlsnt2nQnyVnZZYmEaZGHW1xDjMAfnIjmufLVOHgdBcAYqG1PCsdQDCFHD29ydmZpVGECYB2RbCLbmpxe6I7AFHSSp6VGiCYYhhhG7M0jDABAOKHWcqAEC8AbQq39AePRikCESYAAAAAAA2IMAEAAAAAaECECQAAAABAAyJMAAAAAAAaEGECAAAAANCACBMAAAAAgAbDCJNi48rAl89x7yGR7M40FgdthkK1p7vwWIDwJwFpr2mgXvl28MHmqT6PT6RSHYkauVs2l8vIkB/KIdkXlLQnHg2iWRKNnNg215X6PcLFZkvOzXLD0mL7Sn9j6Npi74/QfurWeonD69BJWYwiTLSjUYhn9GoxOXpd72ZGB7lbYH7WujXeAeOSU3Vd7njW2BFkvEdZbMfuWf8NpmdAeL/xSmPPepQfdxVnpVaXO32CCS5jjNjG+I3UqWZJg2qWJkaubZvbSjd+1fxzJ0fNuxVMg8UEhIvw/OkWxtpPnVqv6fDqj0axwiTCRLxJJCGY4i5N3Os4Zv/GhBKDYCIWKzimg3yMovKIj0QqpdH6ginu0sRjmLhgkjVMcXGj2oWZN0tzIzdum32lossnmZTSeR2jAoKpMQ5RWC91eN0e5buBSYQJgknT6xhm/2aQL02Cie84tRkhBFNEldKAYApPWgWT7tk0TsFkauROBBOp0q6+An/TEv4wMRJyUi9k0j5HPdoLpkislzq8EQmmBCJMzLoBbm7i9oaXrxohrCkhldZoks/bmy+/+SkgeFTFeI/YqtiqlbefenXKPP6gt0ow9fhH2InRGE7ENFPRvR1LpFJXdTGLyZgaA2/ifcssJGUG7G0g1zSten64jEO8V97KK+v+Nkw1S6fRrzCV5kZENy1rka03SwOXkRqwoG1qP+UMg2BvXX0FzXod5g440t3VV2gMZsC1ea8RX0S9y1A9i+anlriwXv3wNjvS+hEmvre5EfkqcrrvadtGKE34eMS/mOdmme7x0lS5WGCsip+MuvoK0jti04XkvQhagFwwBQvpGXCx/M1sIlaHcJqTneaKJFIpDbW99QywLs3/JFu3SX+zhRbCGlLPQLlUmBV2Fi7j5spqV6c6q9HULHXBUZOXGuEqlQqmkHcprWcRXIZUVJbsp83SaPamnnK539alTMBlusdLhfGRgsBrNJ5Fm0Oo2Tg/lX8koXnkkxsS02u9ZxHvaMlHmIgtMA6ESoYplbO/LFw/WOTuaoYqUPf4wq64py8XcBEnN7hJ6B7QAz1y9e7DXaU0FPYmfSDjuiNaBcneh4QGw6ymVGe26AK5tHS7jBX6WS6KCBPJLAlGbtS2UJUmJpi0LkMsiu6n/qEIb2+iIeK6IL00uRHftE90GVo2qp/a4tp6dUTzQpYYYTL5Tk/XUFG8tGUEk1SmcB+MyD9LtrmK/FO7wfpKB1rbYHmQkThT5k+kUhpye1PIU4oYYi60zJDEz2pwmUDh0udgheMQPvWKcA2Tomqa0dqsYbKrNMEIE/WSad91GHXNIaxxCtf6yL1mYwSILkPMRvRTOyKyXtI4O32gijnC5Akvfj1HqwgmuR0Hn1e4zT+o87UMaYGUG7+Dl9AUU+4et1jqqDKqRCqlIbc3xWzLzuyE2V82izlYQdLuLmMFZeeUqAST3CzpRm7eNttKHa9hahCXYDLw06gRvGOSX0ffCBBdhpaN5qc2r+SitF5rQ7Il1jVMkqBfCwmm8I/LzjCLMIVV2VpTthIu3LiloFIaiDDJO5tal9FDMoyYBZORkbsSTPpKhZO5g7f/myHCpL8KISNMNt2JJsIUsfUaDKkbYv1KTmjZ0lV7qZz9qS96zYM6pi/IBfYtWa+qWGpH3shVv4ekXQzA/pVcBJV6XyTwiyQktbtYw6Sd/TfPGqboXUYLLbRgtLDaoEcCszQ2chev5KiV8nVJb/NuPCvrUjAltIZJMkQiwaRfw0R0GVo292uYordeFQTBZGCWG8T7lRz7DULjk05Rfm64B4vydVS0vQw0pXFDLNwji/usT/zJj1gIymzI/JMf4QNB3QKYL71lHu6Lr9q/hhB/V8Ll9+rilmFZbisQTaUGE6J+aWqwCuF1p83+rL117J6VfSUHlwkF7SQDyrSu9iyiWRKNnPjbKCoNGrBCbrr0LFeCKUv2U/aahrG3+i0vWAUfhhF+JSfoKdFliNmIfkrCrfVaQBBMFgrYUYRJ9WpT8GVQg9m+a5uyiTd6br8Ky0oppTUNK9A8ZsMbYbaNzSq4YgUtlBoE9eLpexHcWUT5xKx+Dpbvx9PMzwyFuqdsgZKvb+Kv1D+w0lumkb2x6zoFz+JBL2DKV9hbYbBD/WUQXMYK5QxLMUu6Z1HMkm7k9LY5rFSQP1rPorsMs7WS0oA1furc3jxNwLZQKiyY5kl1obkvS7JR/VRHFNZrhlYwac1SRARnyQHQinhzU3r2KVaSihU/AFBoKc9KB5Gtk9s06M+SszJLkwhTo462OIcZAD+5Ec3zZapwcLoLALHQWp6VDiCYQo6e3uTszNIowgRAuyLYRTe1uD3RHYAoaSXPSg0QTDGMsI1ZGkaYAADxwyxlQIgXgDaFW9ODR6MUgQgTAAAAAIAGRJgAAAAAADQgwgQAAAAAoAERJgAAAAAADYgwAQAAAABoQIQJAAAAAECDYYRJsXFl4MvnuPeQSHZnGouDNkOh2dM9sO9+uJ3ZhYcMyE6spFQaLFD1eTxl8zFKpfQuEEjUyN2yuVxGhvxQDvG+oH4DCLu3ENEX6O5s7DIOKnU5IJ/6dARmuWFpsX2lvzF0bbH3R2g/dW5IlOElbVxph1GEiXY0CvGMXi0mR6/r3czoIHcLzM9at8Y7YFx4+C57jn3PgHTqJ0HbP41Wqbe/CHvWo/y4q/EeZe3UnkazBZwrI3cLXMYYsXmIN1IPnk6lOGtWC9EXjDxL6zJuK3U7IA3cCibV0eORITx/uoWx9tNoDIk4vPqjUawwiTARbxJJCKa4SxP3Oo7ZvzGhCAWTYKInHNosh6Q2wlSqPOJDVTu5UgimdJQmHsPEBZOsYcKj3dnWih9abOFN2tyzjK3dvtLoBySS6xg9EEyNcYjCkKjDG+rGJ8UkwgTBpOl1DLN/M8gnEUxuFQNRMNlXGkIwESuFYEpHaeIxTKNgEj6bdvUV+Dla+ENrRNrF1LOcCCZSpTEMSFgSclIvktc+Rz3aC6ZIDIk6vBEJpgQiTMy6AW5u4vaGl68aIawpIZXWaJLvIjVffvNXLnhUxXiP2KrYqpW3n3p1yjz+WCX1YS7UrNE9XioM9vivF80EaZWK3wgwtdNbLq7UtgthO8isnWIqDbyJ9y2zkJQZsLeBXNO06vnhMg7xXnnzYyJ+Seeodp0vEA3PzGXCVOp4QPRmaeAyUgMWtE3tp5xhEOytq6+gWa/D3AFHurv6Co3BDLg27zXii6h3Gapn0fzUEheGpB/eZkdaP8LE9zY3Il9FTvc9bdsIpQlVLf8+lZtlusdLU+VigbEqfjLq6itI74hNF5L3ImgBRMEU7lh7bvVczwBlMZ260uZkp7kiZrO/pFLLLmhQ21vPAOvS/E+ydZv0N1toIawh9QyUS4VZ2SIbuExIOnbPiqZj6bQeblIm+0Izv9Kdqe/Qw1ca0YDoPYvgMqSismQ/9RkGyd7UMwz327qUCbhM93ipMD5SEHiNxrNocwg1G+en8o8kNI98Dg2JOIEnH2EitsA4pCFx8lTO/rKlZINF7q5mqAJ1jy/sinuKYBI+K4dEG3UnV+p5o/pjB6ohGfXUwYsDhb1JH8i47ohWQbLTh9BgmNWU6swWXSCXlm6XsUIyy0WlD7IN29B3hGDkRs8YoSpNTDBpXYZYFN1P/UMR3t5EQ8R1QXppciO+aZ/oMrRsVD+1JV2GZAsxwmTynZ6uoaJ4acsIJqlM4db5Sx4ELZfU8E/tWsEUhVriexqyUmV+g4VQZj2N0hvVb9+1Yoi50DJDkn7GBZdpFi59DlY4juwLnYgFU32gNB8H6Y3cZg2TXaUJRpiIl0z/rsOoaw5hjVO41kfuNRsjQHQZYjain9qRgCE1xtnpA1XMESZPePHrOVpFMMntOPi8wm3+QZ2vZUgLFFth93h0qw5VT2bmlaqMijL7W1Ua/q283N4Usy07sxNmf9ks5mAFSbu7jBXS1ka9hqleWljPMheXtpVGNSBxCSYDP40awTsm+XX0jQDRZWjZaH5q80oulYZkS6xrmCRBvxYSTOEfl50hjzBFqZakI2lbaSjBFKLSyLwREabUuoweuTXSP51zXbuRkbsSTPpKoxqQzRBh0l+FkBEmm+5EE2FKzpCSX8MUWjAJLVu6ai+Vsz/1Ra95DMP0Bbli40r647hqI1dJUYJbtWGlbAPsXslRKqV3oXFxS1P8IglJyS7WMGln/82zhil6l9GiDC3w1qjayNdii2SBLxh7lotXctRKDQbEjWdlXQqmhNYwSYZIJJj0a5iILkPL5n4NUwSGZEA7fCXHfoPQ+KRTlJ8b7sGifB0VbS8DTWncEAv3yOI+6xN/8iMWgjIbMv/kRyCYxJ94yOdQX3xVNc0x340zTkWs1KuLW4Zlua0AuaekLjCXmzIh6pemBvslvO602Z+1t47ds7Kv5OAyodBN08HrpVJXas8i+oKpO6t/G0Wl5AFx6VmuBFOW7KfsNQ1jb/VbXrAKPgwj/EpO0FOiyxCzEf2URDSGZNiA1EaYVK82BV8GNZjtu7Ypm/gx4varsKyUUlrTsALNYza8EWbb2KyCK1bQQqmzUecUeS+YVhlUqlEtqkEzqpRd7y9ZXSspsNlIw55qusAMrPSWaWRv7LpOwSNU0AuY8hX2VhjsUH8ZBJexgjDDBnqh/VZU6VlaX6AbOcVlnFdqMCBuPIvuMsLjIyUt1Pipc3vzFAPbQqmwYJon1YXmvizJRvVTHZEYkhHJR5icBMoASCfe3JSefYqVpGLFDwAUWsqz0kE05xNsJlJwllw2ku/0AEgDuRHN82WqCLcfKQDx0VqelQ4gmEKOXlQmZxRhAqBdEeyim1rcnugOQJS0kmelBgimlGIYYQIAxA+zlAEhXgDaFG5FGh6NUgQiTAAAAAAAGhBhAgAAAADQgAgTAAAAAIAGRJgAAAAAADQgwgQAAAAAoAERJgAAAAAADaQI08Y2/9h/DAAAAACbEUdnyQEAAAAAtC8ma5ggmAAAAACwKUGECQAAAABAAyJMAAAAAAAaEGECAAAAANCACBMAAAAAgAZEmAAAAAAANCDCBAAAAACgAREmAAAAAAANiDABAAAAAGhAhAkAAAAAQAMiTAAAAAAAGhBhAgAAAADQgAgTAAAAAIAGUoRpsDhVLnlAMAEAAABg02ESYQIAAAAA2JSYrGECAAAAANiUIMIEAAAAAKABESYAAAAAAA2IMAEAAAAAaECECQAAAABAAyJMAAAAAAAa/j8jz0WQpL3vUAAAAABJRU5ErkJggg==" alt="" width="527" height="227" />

  为什么会这样呢?

  在用scanf()从键盘读取数据、printf()向显示器写数据时,这两个函数其实并没有直接使用键盘、显示器,而是用了标准输入和标准输出。程序运行时,操作系统会创建标准的输入和输出。

  "<" 操作符重定向标准输入

  ">" 操作符重定向标准输出

  ">>" 操作符重定向标准输出,如果已存在,追加到已有文件

C语言学习007:重定向标准输入和输出的更多相关文章

  1. go语言学习--处理map的无序输出

    最近工作中遇到了这样的一个场景,需要处理一个无限极分类的问题,对于数据结构的定义首先想到了,map,map[int]map[int]struct.通过两层map的定义归类parent_id和id的关系 ...

  2. C语言学习008:标准错误

    在上一节中的数据文件中(C语言学习007:重定向标准输入和输出),如果文件中的数据包含非法数据,如何让程序显示一条错误的提示消息呢?就需要用到标准错误 #include <stdio.h> ...

  3. Linux标准输入、输出和错误和文件重定向(转) --- good

    标准输入.输出和错误 当我们在shell中执行命令的时候,每个进程都和三个打开的文件相联系,并使用文件描述符来引用这些文件.由于文件描述符不容易记忆,shell同时也给出了相应的文件名.下面就是这些文 ...

  4. Linux标准输入、输出和错误和文件重定向 专题

    当我们在shell中执行命令的时候,每个进程都和三个打开的文件相联系,并使用文件描述符来引用这些文件.由于文件描述符不容易记忆,shell同时也给出了相应的文件名. 下面就是这些文件描述符及它们通常所 ...

  5. Java 输入/输出——重定向标准输入/输出

    在System类中提供了如下三个重定向标准输入/输出方法. static void setErr​(PrintStream err) Reassigns the "standard" ...

  6. Java重定向标准输入/输出

    在System类中提供了三个重定向标准输入/输出的方法static void setErr(PrintStream err) 重定向“标准”错误输出流static void setIn(InputSt ...

  7. K8S学习笔记之使用Fluent-bit将容器标准输入和输出的日志发送到Kafka

    0x00 概述 K8S内部署微服务后,对应的日志方案是不落地方案,即微服务的日志不挂在到本地数据卷,所有的微服务日志都采用标准输入和输出的方式(stdin/stdout/stderr)存放到管道内,容 ...

  8. 《C语言入门1.2.3—一个老鸟的C语言学习心得》—清华大学出版社炮制的又一本劣书及伪书

    <C语言入门1.2.3—一个老鸟的C语言学习心得>—清华大学出版社炮制的又一本劣书及伪书 [薛非评] 区区15页,有80多个错误. 最严重的有: 通篇完全是C++代码,根本不是C语言代码. ...

  9. Python语言学习之Python入门到进阶

    人们常说Python语言简单,编写简单程序时好像也确实如此.但实际上Python绝不简单,它也是一种很复杂的语言,其功能特征非常丰富,能支持多种编程风格,在几乎所有方面都能深度定制.要想用好Pytho ...

随机推荐

  1. 【Java】ThreadLocal细节分析

    ThreadLocal通过中文解释就是线程本地变量,是线程的一个局部变量.根据哲学家黑格尔“的存在即合理”的说法,ThreadLocal的出现肯定是有它的意义,它的出现也是因为多线程的一个产物.Thr ...

  2. 使用canvas检测HTML5视频解码错误

    乍一看这标题,有点吊炸天的赶脚,canvas跟<video>能有什么联系?不过请放心我不是标题党.事情是这样的: HTML5的<video>标签所支持的视频格式确实有限,mp4 ...

  3. iOS——Core Animation 知识摘抄(四)

    原文地址http://www.cocoachina.com/ios/20150106/10840.html 延迟解压 一旦图片文件被加载就必须要进行解码,解码过程是一个相当复杂的任务,需要消耗非常长的 ...

  4. java程序 启动时参数

      iEMP34:/opt/version/lktest/b030/jre/jre_linux/bin # ./java -classpath . SysInfo Exception in threa ...

  5. [Linux]Linux下安装和配置solr/tomcat/IK分词器 详细实例二.

    为了更好的排版, 所以将IK分词器的安装重启了一篇博文,  大家可以接上solr的安装一同查看.[Linux]Linux下安装和配置solr/tomcat/IK分词器 详细实例一: http://ww ...

  6. OutputCache概念学习

    目录 OutputCache概念学习 OutputCache属性详解(一) OutputCache属性详解(二) OutputCache属性详解(三) OutputCache属性详解(四)— SqlD ...

  7. ELK日志应用平台搭建

    ELK架构: ElasticSearch:用于存储.索引日志. Logstash:用于收集.处理和转发事件或日志信息的工具. Kibana:搜索和可视化的日志的WEB界面. ELK优点: a.处理方式 ...

  8. CI Weekly #2 | 如何优化开发流程,实现项目持续集成?

    原文首发于 flow.ci Blog >> 链接,转载请联系:) CI Weekly 围绕『 软件工程效率提升』 进行一系列技术内容分享,包括国内外持续集成.持续交付,持续部署.自动化测试 ...

  9. 更新日志 - BugHD iOS 客户端上线

    中秋.十一长假归来,"满血复活"的我们做了 fir.im 和 BugHD 的优化更新:) BugHD 新增功能 1.iOS 客户端上线 BugHD iOS 客户端上线了,你可以随时 ...

  10. KnockoutJS 3.X API 第四章 表单绑定(9) value绑定

    目的 value绑定主要用于DOM元素给视图模型赋值用的.通常用于<input><select><textarea>等元素. value绑定与text绑定的区别在于 ...