UVA 116 Unidirectional TSP(DP最短路字典序)
Description

Unidirectional TSP |
Background
Problems that require minimum paths through some domain appear in many different areas of computer science. For example, one of the constraints in VLSI routing problems is minimizing wire length. The Traveling Salesperson Problem (TSP) -- finding whether all the cities in a salesperson's route can be visited exactly once with a specified limit on travel time -- is one of the canonical examples of an NP-complete problem; solutions appear to require an inordinate amount of time to generate, but are simple to check.
This problem deals with finding a minimal path through a grid of points while traveling only from left to right.
The Problem
Given an matrix of integers, you are to write a program that computes a path of minimal weight. A path starts anywhere in column 1 (the first column) and consists of a sequence of steps terminating in column n (the last column). A step consists of traveling from column i to column i+1 in an adjacent (horizontal or diagonal) row. The first and last rows (rows 1 and m) of a matrix are considered adjacent, i.e., the matrix ``wraps'' so that it represents a horizontal cylinder. Legal steps are illustrated below.
The weight of a path is the sum of the integers in each of the n cells of the matrix that are visited.
For example, two slightly different matrices are shown below (the only difference is the numbers in the bottom row).
The minimal path is illustrated for each matrix. Note that the path for the matrix on the right takes advantage of the adjacency property of the first and last rows.
The Input
The input consists of a sequence of matrix specifications. Each matrix specification consists of the row and column dimensions in that order on a line followed by integers where m is the row dimension and n is the column dimension. The integers appear in the input in row major order, i.e., the first n integers constitute the first row of the matrix, the second n integers constitute the second row and so on. The integers on a line will be separated from other integers by one or more spaces. Note: integers are not restricted to being positive. There will be one or more matrix specifications in an input file. Input is terminated by end-of-file.
For each specification the number of rows will be between 1 and 10 inclusive; the number of columns will be between 1 and 100 inclusive. No path's weight will exceed integer values representable using 30 bits.
The Output
Two lines should be output for each matrix specification in the input file, the first line represents a minimal-weight path, and the second line is the cost of a minimal path. The path consists of a sequence of n integers (separated by one or more spaces) representing the rows that constitute the minimal path. If there is more than one path of minimal weight the path that is lexicographically smallest should be output.
Sample Input
5 6
3 4 1 2 8 6
6 1 8 2 7 4
5 9 3 9 9 5
8 4 1 3 2 6
3 7 2 8 6 4
5 6
3 4 1 2 8 6
6 1 8 2 7 4
5 9 3 9 9 5
8 4 1 3 2 6
3 7 2 1 2 3
2 2
9 10 9 10
Sample Output
1 2 3 4 4 5
16
1 2 1 5 4 5
11
1 1
19
/*
从前往后推,把所有解找出来再找字典序最小的,WA了。
从后往前推,直接是字典序最小的。
*/
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; const int INF=;
int d[][],dir[][]={,-,-,-,,-};
int m,n,a[][],next[][]; int main()
{
int i,j,k;
while(~scanf("%d%d",&n,&m))
{
for(i=;i<=n;i++)for(j=;j<=m;j++) scanf("%d",&a[i][j]);
memset(next,-,sizeof(next));
for(i=;i<=n;i++) d[i][m]=a[i][m];
for(i=;i<=n;i++) for(j=;j<m;j++) d[i][j]=INF;
for(i=m;i>=;i--)
{
for(j=;j<=n;j++)
{
for(k=;k<;k++)
{
int x=((j+dir[k][]-)%n+n)%n+;
int y=i+dir[k][];
if(d[x][y]>d[j][i]+a[x][y])
{
d[x][y]=d[j][i]+a[x][y];
next[x][y]=j;
}
else if(d[x][y] == d[j][i]+a[x][y] && next[x][y] > j)
next[x][y] = j; }
}
}
int ansm=INF,ansi;
for(i=;i<=n;i++)
if(ansm>d[i][])
{
ansm=d[i][];ansi=i;
}
for(i=;i<=m;i++)
{
printf(i==?"%d":" %d",ansi);
ansi=next[ansi][i];
}
printf("\n%d\n",ansm);
}
return ;
}
UVA 116 Unidirectional TSP(DP最短路字典序)的更多相关文章
- UVA 116 Unidirectional TSP(dp + 数塔问题)
Unidirectional TSP Background Problems that require minimum paths through some domain appear in ma ...
- UVa 116 Unidirectional TSP (DP)
该题是<算法竞赛入门经典(第二版)>的一道例题,难度不算大.我先在没看题解的情况下自己做了一遍,虽然最终通过了,思路与书上的也一样.但比书上的代码复杂了很多,可见自己对问题的处理还是有所欠 ...
- uva 116 Unidirectional TSP (DP)
uva 116 Unidirectional TSP Background Problems that require minimum paths through some domain appear ...
- uva 116 Unidirectional TSP【号码塔+打印路径】
主题: uva 116 Unidirectional TSP 意甲冠军:给定一个矩阵,当前格儿童值三个方向回格最小值和当前的和,就第一列的最小值并打印路径(同样则去字典序最小的). 分析:刚開始想错了 ...
- UVA - 116 Unidirectional TSP 多段图的最短路 dp
题意 略 分析 因为字典序最小,所以从后面的列递推,每次对上一列的三个方向的行排序就能确保,数字之和最小DP就完事了 代码 因为有个地方数组名next和里面本身的某个东西冲突了,所以编译错了,后来改成 ...
- UVA 116 Unidirectional TSP 经典dp题
题意:找最短路,知道三种行走方式,给出图,求出一条从左边到右边的最短路,且字典序最小. 用dp记忆化搜索的思想来考虑是思路很清晰的,但是困难在如何求出字典序最小的路. 因为左边到右边的字典序最小就必须 ...
- uva 116 Unidirectional TSP(动态规划,多段图上的最短路)
这道题目并不是很难理解,题目大意就是求从第一列到最后一列的一个字典序最小的最短路,要求不仅输出最短路长度,还要输出字典序最小的路径. 这道题可以利用动态规划求解.状态定义为: cost[i][j] = ...
- UVA - 116 Unidirectional TSP (单向TSP)(dp---多段图的最短路)
题意:给一个m行n列(m<=10, n<=100)的整数矩阵,从第一列任何一个位置出发每次往右,右上或右下走一格,最终到达最后一列.要求经过的整数之和最小.第一行的上一行是最后一行,最后一 ...
- UVa - 116 - Unidirectional TSP
Background Problems that require minimum paths through some domain appear in many different areas of ...
随机推荐
- 判断是否是同一人的方法——equals()?在Person类中提供一个比较的方法compare()返回boolean值?对象自己和自己比?
判断是否是同一人的方法——equals() 不能直接用per1==per2,这不是对象内容的比较而是存放对象地址的值得比较 在Person类中提供一个比较的方法compare()返回boolean值 ...
- c++ json字符串转换成map管理
在cocos2dx for lua中,我们经常通过lua的table传入c++使用,然后早c++层操作数据. 实现步骤大致如下: table->string->c++层->通过rap ...
- SpringMVC 项目中引用其他 Module 中的方法
1. 将要引用的Module 引入项目中 2. 在主Module中添加依赖, 3. 被引用的类必须放在 Module 中/src/下的某个package中,否则引用不到(重要)
- python中文件操作的基本方法
在python中对一个文件进行操作,分为三大步:打开,操作,关闭 首先创建一个文件hello,里面内容为hello world 一.打开一个文件 1.#open(‘文件名或文件路径’,‘操作模式’,文 ...
- Leetcode 75. 颜色分类
题目链接 https://leetcode-cn.com/problems/sort-colors/description/ 题目描述 给定一个包含红色.白色和蓝色,一共 n 个元素的数组,原地对它们 ...
- gpg: signing failed: secret key not available
1 使用png签名tag时报错“ jb@39:~/11$ git tag -s gpg -m "gpg"gpg: directory `/home/jb/.gnupg' creat ...
- VR开发的烦恼——范围限制
本文章由cartzhang编写,转载请注明出处. 所有权利保留. 文章链接:http://blog.csdn.net/cartzhang/article/details/52230865 作者:car ...
- NAT(地址转换技术)详解(转载)
作者:逃离地球的小小呆 来源:CSDN 原文:https://blog.csdn.net/gui951753/article/details/79593307版权声明:本文为博主原创文章,转载请附上博 ...
- 转:GridView中RowDataBound的取值
GridView是ASP.NET中功能强大的数据显示控件,它的RowDataBound事件为我们提供了方便的控制行.列数据的途径. 要获取当前行的某个数据列,我在实践中总结有如下几种方法: 1. Ce ...
- Win7通知区域的图标怎么去除?
由于本人有洁癖,最近在用win7的时候,很收不了已经卸载了的一些软件,在win7右下角的通知区域图标中还留有痕迹,于是上网查找了下解决方案. 用以下方法完美解决问题. 这里依然是以注册表的修改方法为主 ...