题目

Katu Puzzle is presented as a directed graph G(V, E) with each edge e(a, b) labeled by a boolean operator op (one of AND, OR, XOR) and an integer c (0 ≤ c ≤ 1). One Katu is solvable if one can find each vertex Vi a value Xi (0 ≤ Xi ≤ 1) such that for each edge e(a, b) labeled by op and c, the following formula holds:

Xa op Xb = c

The calculating rules are:

AND 0 1

0 0 0

1 0 1

OR 0 1

0 0 1

1 1 1

XOR 0 1

0 0 1

1 1 0

Given a Katu Puzzle, your task is to determine whether it is solvable.

输入格式

The first line contains two integers N (1 ≤ N ≤ 1000) and M,(0 ≤ M ≤ 1,000,000) indicating the number of vertices and edges.

The following M lines contain three integers a (0 ≤ a < N), b(0 ≤ b < N), c and an operator op each, describing the edges.

输出格式

Output a line containing "YES" or "NO".

输入样例

4 4

0 1 1 AND

1 2 1 OR

3 2 0 AND

3 0 0 XOR

输出样例

YES

提示

X0 = 1, X1 = 1, X2 = 0, X3 = 1.

题解

跪了。。。就因为n << 1写成了1 << n QAQ

这题加深了我对2-sat建图的理解,建边就表示选择了起点就必须选择终点

对于每个限制条件,我们分别考虑选择x的不同值

AND

为1,则x0->x1,y0->y1,让x0,y0自相矛盾,无法选择

为0,则x0->y1,y0->x1

OR

为1,则x0->y1,y0->x1

为0,则x1->x0,y1->y0

XOR

为1,则x0->y1,x1->y0,y1->x0,y0->x1

为0,则x0->y0,x1->y1,y0->x0,y1->x1

tarjan判断一下x0和x1是否在同一个强联通分量即可

#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define cls(x) memset(x,0,sizeof(x))
using namespace std;
const int maxn = 4005,maxm = 4000005,INF = 1000000000;
int n,m,h[maxn],ne;
struct EDGE{int to,nxt;}ed[maxm];
void build(int u,int v){ed[ne] = (EDGE){v,h[u]}; h[u] = ne++;}
int dfn[maxn],low[maxn],Scc[maxn],st[maxn],scci,top,cnt;
void dfs(int u){
dfn[u] = low[u] = ++cnt;
st[++top] = u;
Redge(u){
if (!dfn[to = ed[k].to]){
dfs(to);
low[u] = min(low[u],low[to]);
}else if (!Scc[to]) low[u] = min(low[u],dfn[to]);
}
if (dfn[u] == low[u]){
scci++;
do{Scc[st[top]] = scci;}while (st[top--] != u);
}
}
char opt[10];
int main(){
while (~scanf("%d%d",&n,&m)){
int a,b,v,x0,x1,y0,y1; cnt = scci = top = 0; ne = 1;
cls(dfn); cls(h); cls(Scc); cls(low);
while (m--){
scanf("%d%d%d%s",&a,&b,&v,opt);
x0 = a << 1; x1 = x0 | 1; y0 = b << 1; y1 = y0 | 1;
if (opt[0] == 'A'){
if (v) build(x0,x1),build(y0,y1);
else build(x1,y0),build(y1,x0);
}
else if (opt[0] == 'O'){
if (v) build(x0,y1),build(y0,x1);
else build(x1,x0),build(y1,y0);
}
else if (opt[0] == 'X'){
if (v) build(x0,y1),build(y0,x1),build(x1,y0),build(y1,x0);
else build(x1,y1),build(y0,x0),build(x0,y0),build(y1,x1);
}
}
for (int i = 0; i < 2 * n; i++) if (!dfn[i]) dfs(i);
bool flag = true;
for (int i = 0; i < n; i++)
if (Scc[i << 1] == Scc[i << 1 | 1]){
flag = false; break;
}
if (flag) printf("YES\n");
else printf("NO\n");
}
return 0;
}

POJ3678 Katu Puzzle 【2-sat】的更多相关文章

  1. POJ 3678 Katu Puzzle(2 - SAT) - from lanshui_Yang

    Description Katu Puzzle is presented as a directed graph G(V, E) with each edge e(a, b) labeled by a ...

  2. poj3678 Katu Puzzle 2-SAT

    Katu Puzzle Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6714   Accepted: 2472 Descr ...

  3. POJ-3678 Katu Puzzle 2sat

    题目链接:http://poj.org/problem?id=3678 分别对and,or,xor推出相对应的逻辑关系: 逻辑关系 1 0  A and B     A'->A,B'->B ...

  4. POJ3678 Katu Puzzle

    原题链接 \(2-SAT\)模板题. 将\(AND,OR,XOR\)转换成\(2-SAT\)的命题形式连边,用\(tarjan\)求强连通分量并检验即可. #include<cstdio> ...

  5. POJ1651 Multiplication Puzzle【区间DP】

    LINK 每次删除一个数,代价是左右两边相邻的数的当前数的积 第一个和最后一个数不能删除 问最后只剩下第一个数的最后一个数的最小代价 思路 很简单的DP 正着考虑没有办法确定两边的数 那么就把每个区间 ...

  6. poj 1651 Multiplication Puzzle【区间DP】

    题目链接:http://poj.org/problem? id=1651 题意:初使ans=0,每次消去一个值,位置在pos(pos!=1 && pos !=n) 同一时候ans+=a ...

  7. USACO4.4 Shuttle Puzzle【bfs+优化】

    直接上$bfs$,每一个状态记录下当前字符串的样子,空格的位置,和走到这个状态的答案. 用空格的位置转移,只有$50pts$ 考虑到题目一个性质:$W$只往右走,$B$只往左走,就可以过了. #inc ...

  8. poj2893 M*N puzzle 【n*m数码问题小结】By cellur925

    题目传送门 这个问题是来源于lydrainbowcat老师书上讲排序的一个扩展.当时讲的是奇数码问题,其实这种问题有两种问法:一种局面能否到另一种局面.到达目标局面的最小步数. 本文部分内容引用于ly ...

  9. 【codeforces 761E】Dasha and Puzzle

    [题目链接]:http://codeforces.com/contest/761/problem/E [题意] 给你一棵树,让你在平面上选定n个坐标; 使得这棵树的连接关系以二维坐标的形式展现出来; ...

随机推荐

  1. 设置meta标签 清除页面缓存,如:<meta http-equiv="Cache-Control" content="no-cache"/>

    <meta http-equiv="Cache-Control" content="no-cache, no-store, must-revalidate" ...

  2. springboot框架快速搭建

    1.    新建Maven项目  spring-boot 2.    pom.xml <project xmlns="http://maven.apache.org/POM/4.0.0 ...

  3. 【bug】【yii】配置log时,报错 Setting read-only property: yii\web\Application::log

    Setting read-only property: yii\web\Application::log 配置放在了 components 外面,应该放在里面

  4. JZOJ 4735. 最小圈

    Description 对于一张有向图,要你求图中最小圈的平均值最小是多少,即若一个圈经过k个节点,那么一个圈的平均值为圈上k条边权的和除以k,现要求其中的最小值 Input 第一行2个正整数,分别为 ...

  5. Windows Server 2008 正式版下载汇总

    windows 2008是微软推出的新一代服务器专用系统版本, 具有良好的用户体验以及应用程序,windows 2008大幅提升了web服务以及应用程序的性能, 让企业在提供和维护资源服务的时候更加得 ...

  6. git之简单入门及操作~

    看了bili的教程,https://www.bilibili.com/video/av23853294?from=search&seid=3300012850779227291 特此整理下. ...

  7. Patrick and Shopping

    Patrick and Shopping 今天 Patrick 等待着他的朋友 Spongebob 来他家玩.为了迎接 Spongebob,Patrick 需要去他家附近的两家商店  买一些吃的.他家 ...

  8. UVA 10859 Placing Lamppost 树形DP+二目标最优解的求解方案

    题意:给定一个无向,无环,无多重边,要求找出最少的若干点,使得,每条边之中至少有一个点上有街灯.在满足上述条件的时候将还需要满足让两个点被选择的边的数量尽量多. 题解: 对于如何求解最小的节点数目这点 ...

  9. [原]sencha touch之表单(login demo)

    现在来说说sencha touch中的表单,举个简单的login的例子,相关的说明我都放在了注释中,看下面代码 Ext.application({ id:'itKingApp', launch:fun ...

  10. HDU 3896 Greatest TC 双连通分量

    题意 给一个连通的无向图,有两种询问: \(a, b, c, d\),问如果删掉\(c,d\)之间的边,\(a,b\)之间是否还连通 \(a, b, c\),问如果删掉顶点\(c\),\(a,b\)之 ...