【bzoj1257】[CQOI2007]余数之和sum

2014年9月1日1,9161

Description

给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod i表示k除以i的余数。例如j(5, 3)=3 mod 1 + 3 mod 2 + 3 mod 3 + 3 mod 4 + 3 mod 5=0+1+0+3+3=7

Input

输入仅一行,包含两个整数n, k。

Output

输出仅一行,即j(n, k)。

Sample Input

5 3

Sample Output

7

HINT

50%的数据满足:1<=n, k<=1000 100%的数据满足:1<=n ,k<=10^9

题解:暴力枚举还有50分不得不吐槽一番,正解是怎么样的呢?

k%i可以写成k-k/i*i,所以重点在求∑⌊ki⌋∗i

打表可得,当i逐渐增大时,∑⌊ki⌋在连续区间内的值保持不变。仔细想想其实⌊ki⌋的取值只有k√个。因为每个数都对应一段连续区间,所以[1,n]整个区间被分为k√个。于是我们可以枚举每个区间,复杂度是O(k√)。

设连续区间为[l,r],区间内的值为w,则需满足w=⌊kl⌋=⌊kr⌋,使得l最小,r最大。

因为我们要枚举区间,所以l的值可以确定。

因为w=⌊kl⌋,w是下取整后的结果,是最小的。所以r=⌊kw⌋,w是最小的,r就是最大的。

这样在当前区间内,w的值就确定了,区间大小也确定了。因为要乘i,所以当前区间就是公差为w的等差数列。当前区间对答案的贡献为:

−l+r2∗w∗(r−l+1)

最终答案是:

n∗k−∑l+r2∗w∗(r−l+1)
 
然后就可以了。
 #include<cstdio>
#include<algorithm>
#include<cmath>
#include<iostream>
#include<cstring>
#define ll long long
using namespace std; ll ans,n,k; int main()
{
scanf("%lld%lld",&n,&k);
if (n>k)
{
ans=(ll)(n-k)*k;
n=k;
}
ll r;
for (int i=;i<=n;i=r+)
{
int t=k/i;
r=k/t;
if (r>=n) r=n;
ans=ans+(ll)(r-i+)*k-(ll)(r-i+)*(i+r)/*t;
}
printf("%lld",ans);
}

【bzoj1257】[CQOI2007]余数之和sum的更多相关文章

  1. bzoj千题计划173:bzoj1257: [CQOI2007]余数之和sum

    http://www.lydsy.com/JudgeOnline/problem.php?id=1257 k%i=k-int(k/i)*i 除法分块,对于相同的k/i用等差序列求和来做 #includ ...

  2. BZOJ1257 [CQOI2007]余数之和sum

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...

  3. bzoj1257: [CQOI2007]余数之和sum(数论)

    非常经典的题目... 要求 则有 实际上 最多只有2*sqrt(k)种取值,非常好证明 因为>=sqrt(k)的数除k下取整得到的数一定<=sqrt(k),而k除以<=sqrt(k) ...

  4. [BZOJ1257][CQOI2007]余数之和sum 数学+分块

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1257 题目所求为$$Ans=\sum_{i=1}^nk%i$$ 将其简单变形一下$$Ans ...

  5. BZOJ 1257: [CQOI2007]余数之和sum

    1257: [CQOI2007]余数之和sum Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 3769  Solved: 1734[Submit][St ...

  6. bzoj 1257: [CQOI2007]余数之和sum 数学 && 枚举

    1257: [CQOI2007]余数之和sum Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 1779  Solved: 823[Submit][Sta ...

  7. BZOJ 1257: [CQOI2007]余数之和sum( 数论 )

    n >= k 部分对答案的贡献为 k * (n - k) n < k 部分贡献为 ∑ (k - ⌊k / i⌋ * i)  = ∑  , ⌊k / i⌋ 相等的数是连续的一段, 此时这段连 ...

  8. 1257: [CQOI2007]余数之和sum

    1257: [CQOI2007]余数之和sum Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 2001  Solved: 928[Submit][Sta ...

  9. BZOJ 1257: [CQOI2007]余数之和sum【神奇的做法,思维题】

    1257: [CQOI2007]余数之和sum Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 4474  Solved: 2083[Submit][St ...

随机推荐

  1. Problem A: 文件操作--二进制文件读入

    Problem A: 文件操作--二进制文件读入 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 1952  Solved: 524[Submit][St ...

  2. Render渲染函数和JSX

    1.Render函数:render是用来替换temlate的,需要更灵活的模板的写法的时候,用render. 官网API地址:https://cn.vuejs.org/v2/guide/render- ...

  3. 自定义AlertView的方法和改变Alert的弹出位置以及其宽度

    此方法在IOS7中不适合 一.自定义AlertView 1.首先新建一个OC类继承与AlertView. 2.然后再.m中添加方法 - (void)layoutSubviews 可以再这个方法里边改变 ...

  4. Python学习笔记5(函数)

    [摘要]本文详细介绍python中的函数,以及与之相关的参数和作用域的概念,并介绍递归的概念以及在程序中的应用. 函数定义 定义函数要用函数定义语句def.如下: def hello(name): r ...

  5. 【费用流】loj#545. 「LibreOJ β Round #7」小埋与游乐场

    好像现在看来这个缩点的思路挺清晰啊 题目描述 有两个非负整数组成的可重集合 $A$ 和 $B$. 现在你可以对 $A$ 中至多 $k$ 个元素进行操作.操作方法为:设你准备操作且未被操作过的 $A$ ...

  6. Spring AOP注解形式简单实现

    实现步骤: 1:导入类扫描的注解解析器 命名空间:xmlns:context="http://www.springframework.org/schema/context" xsi ...

  7. 【Redis】DENIED Redis is running in protected mode

    .修改redis服务器的配置文件 vi redis.conf 注释以下绑定的主机地址 # bind 127.0.0.1 .修改redis服务器的参数配置 修改redis的守护进程为no ,不启用 &g ...

  8. PHP redis使用命令

    很有用;以下是redis官方提供的命令使用技巧: 下载地址如下: https://github.com/owlient/phpredis(支持redis 2.0.4) Redis::__constru ...

  9. apply 与 lambda

    Python中的lambda和apply用法  https://blog.csdn.net/anshuai_aw1/article/details/82347016

  10. 爬虫之Scrapy和分页

    下一页和详情页的处理 xpath提取时 注意: 结合网页源代码一起查找 不用框架的爬取 获取下一页 自带href属性 1)首页有下一页 next_url = element.xpath('.//a[t ...