题目描述

轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的。一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道。如下图所示

N轮状病毒的产生规律是在一个N轮状基中删去若干条边,使得各原子之间有唯一的信息通道,例如共有16个不同的3轮状病毒,如下图所示

现给定n(N<=100),编程计算有多少个不同的n轮状病毒

输入

第一行有1个正整数n

输出

计算出的不同的n轮状病毒数输出

样例输入

3

样例输出

16


题解

矩阵树定理+高精度

求无向图生成树个数,显然使用矩阵树定理。

然后得到的行列式如下:

(-1和3处是相同的结构,其余位置为0)

然后可以使用高精度小数进行高斯消元,不过这样显然不够优雅。

手推一下这个行列式的性质,可以发现:$F(n)=3*F(n-1)-F(n-2)+2$。

这样就可以直接递推了。

高精度什么的使用Python就好啦。

n = int(input())
f = [0] * 105
f[1] = 1
for i in range(2 , n + 1):
f[i] = 3 * f[i - 1] - f[i - 2] + 2
print(f[n])

【bzoj1002】[FJOI2007]轮状病毒 矩阵树定理+高精度的更多相关文章

  1. BZOJ 1002 轮状病毒 矩阵树定理

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1002 题目大意: 给定n(N<=100),编程计算有多少个不同的n轮状病毒 思路 ...

  2. [bzoj1002]轮状病毒-矩阵树定理

    Brief Description 求外圈有\(n\)个点的, 形态如图所示的无向图的生成树个数. Algorithm Design \[f(n) = (3*f(n-1)-f(n-2)+2)\] Co ...

  3. BZOJ1002 FJOI2007 轮状病毒 【基尔霍夫矩阵+高精度】

    BZOJ1002 FJOI2007 轮状病毒 Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原 ...

  4. BZOJ1002:[FJOI2007]轮状病毒(找规律,递推)

    Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子 和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下 ...

  5. BZOJ 2467: [中山市选2010]生成树(矩阵树定理+取模高斯消元)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2467 题意: 思路:要用矩阵树定理不难,但是这里的话需要取模,所以是需要计算逆元的,但是用辗转相减会 ...

  6. [专题总结]矩阵树定理Matrix_Tree及题目&题解

    专题做完了还是要说两句留下什么东西的. 矩阵树定理通俗点讲就是: 建立矩阵A[i][j]=edge(i,j),(i!=j).即矩阵这一项的系数是两点间直接相连的边数. 而A[i][i]=deg(i). ...

  7. [spoj104][Highways] (生成树计数+矩阵树定理+高斯消元)

    In some countries building highways takes a lot of time... Maybe that's because there are many possi ...

  8. BZOJ 4766: 文艺计算姬 [矩阵树定理 快速乘]

    传送门 题意: 给定一个一边点数为n,另一边点数为m,共有n*m条边的带标号完全二分图$K_{n,m}$ 求生成树个数 1 <= n,m,p <= 10^18 显然不能暴力上矩阵树定理 看 ...

  9. bzoj 4596 [Shoi2016]黑暗前的幻想乡 矩阵树定理+容斥

    4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 559  Solved: 325[Submit][Sta ...

随机推荐

  1. HDU 1864 最大报销额(01背包,烂题)

    题意:被坑惨,单项不能超过600,其实是一张发票上A类/B类/C类的总和分别不能超过600. 思路:此题的数据很烂.用贪心也能过,用01背包也可以.都测试不出到底那些是错的. #include < ...

  2. 洛谷 P2868 [USACO07DEC]观光奶牛Sightseeing Cows

    题目描述 Farmer John has decided to reward his cows for their hard work by taking them on a tour of the ...

  3. UVA 1600 Patrol Robert 巡逻机器人 (启发搜索BFS)

    非常适合A*的一道题. 比普通的迷宫问题加一个信息k表示当前穿过的障碍物的数量. #include<cstdio> #include<cstring> #include< ...

  4. self & this 上下文

    对象:指向对象的首地址: 函数:代表了函数运行的主要上下文: 内部:在类的内部使用. self Within the body of a class method, self refers to th ...

  5. Python-OpenCV——Image inverting

    通常我们将读入的彩色图转化成灰度图,需要将灰度图反转得到掩码,如何正确快速的得到某个图像的反转图呢? 首先看一种看似很正确的写法,对其中每个像素进行如下处理: img[x,y] = abs(img[x ...

  6. attachEvent和addEventListener 的使用方法和区别

    attachEvent方法,为某一事件附加其它的处理事件.(不支持Mozilla系列)addEventListener方法 用于 Mozilla系列document.getElementById(&q ...

  7. cephfs 挂载 卸载

    #挂载 sudo ceph-fuse -m 10.1.xx.231:6789,10.1.xx.232:6789,10.1.xx.233:6789 -r /MySQL-BK /data/backup # ...

  8. java实现验证码功能

    java实现验证码功能 通过java代码实现验证码功能的一般思路: 一.通过java代码生成一张验证码的图片,将验证码的图片保存到项目中的指定文件中去,代码如下: package com.util; ...

  9. [提供可行性脚本] RHEL 7/CentOS 7/Fedora28 重命名网卡名称

    实验说明: 在许多自动化任务中,脚本往往是通过读取配置文件来获取信息的,红帽系的系统自升级之后(CentOS7/RHEL7),网卡命名采用“一致性网络设备接口”的命名方法,导致不同设备的不同网卡名称各 ...

  10. 【android】安卓的权限提示及版本相关

    Only dangerous permissions require user agreement. The way Android asks the user to grant dangerous ...