题目描述

轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的。一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道。如下图所示

N轮状病毒的产生规律是在一个N轮状基中删去若干条边,使得各原子之间有唯一的信息通道,例如共有16个不同的3轮状病毒,如下图所示

现给定n(N<=100),编程计算有多少个不同的n轮状病毒

输入

第一行有1个正整数n

输出

计算出的不同的n轮状病毒数输出

样例输入

3

样例输出

16


题解

矩阵树定理+高精度

求无向图生成树个数,显然使用矩阵树定理。

然后得到的行列式如下:

(-1和3处是相同的结构,其余位置为0)

然后可以使用高精度小数进行高斯消元,不过这样显然不够优雅。

手推一下这个行列式的性质,可以发现:$F(n)=3*F(n-1)-F(n-2)+2$。

这样就可以直接递推了。

高精度什么的使用Python就好啦。

n = int(input())
f = [0] * 105
f[1] = 1
for i in range(2 , n + 1):
f[i] = 3 * f[i - 1] - f[i - 2] + 2
print(f[n])

【bzoj1002】[FJOI2007]轮状病毒 矩阵树定理+高精度的更多相关文章

  1. BZOJ 1002 轮状病毒 矩阵树定理

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1002 题目大意: 给定n(N<=100),编程计算有多少个不同的n轮状病毒 思路 ...

  2. [bzoj1002]轮状病毒-矩阵树定理

    Brief Description 求外圈有\(n\)个点的, 形态如图所示的无向图的生成树个数. Algorithm Design \[f(n) = (3*f(n-1)-f(n-2)+2)\] Co ...

  3. BZOJ1002 FJOI2007 轮状病毒 【基尔霍夫矩阵+高精度】

    BZOJ1002 FJOI2007 轮状病毒 Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原 ...

  4. BZOJ1002:[FJOI2007]轮状病毒(找规律,递推)

    Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子 和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下 ...

  5. BZOJ 2467: [中山市选2010]生成树(矩阵树定理+取模高斯消元)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2467 题意: 思路:要用矩阵树定理不难,但是这里的话需要取模,所以是需要计算逆元的,但是用辗转相减会 ...

  6. [专题总结]矩阵树定理Matrix_Tree及题目&题解

    专题做完了还是要说两句留下什么东西的. 矩阵树定理通俗点讲就是: 建立矩阵A[i][j]=edge(i,j),(i!=j).即矩阵这一项的系数是两点间直接相连的边数. 而A[i][i]=deg(i). ...

  7. [spoj104][Highways] (生成树计数+矩阵树定理+高斯消元)

    In some countries building highways takes a lot of time... Maybe that's because there are many possi ...

  8. BZOJ 4766: 文艺计算姬 [矩阵树定理 快速乘]

    传送门 题意: 给定一个一边点数为n,另一边点数为m,共有n*m条边的带标号完全二分图$K_{n,m}$ 求生成树个数 1 <= n,m,p <= 10^18 显然不能暴力上矩阵树定理 看 ...

  9. bzoj 4596 [Shoi2016]黑暗前的幻想乡 矩阵树定理+容斥

    4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 559  Solved: 325[Submit][Sta ...

随机推荐

  1. noip模拟赛#15

    #15 T1:a[i]>=a[i/2].输出a的最大字典序 =>可以发现这是二叉树的情况那么就先预处理出每个点有多少个儿子然后递归处理就可以了. #include<cstdio> ...

  2. [web开发] Vue+Spring Boot 上海大学预约系统开发记录

    前端界面 使用Quasar将组件都排好,用好css. Quasar 入门 # 确保你在全局安装了vue-cli # Node.js> = 8.9.0是必需的. $ npm install -g ...

  3. HTML之元素分类

    一.元素展示类型 在HTML本身定义了很多元素,这些元素在网页上展示的时候都会有自己的默认状态,例如有些元素在默认状态下对高宽的属性设置不起作用,有些元素都默认情况下都独立一行显示,这种现象我们称之为 ...

  4. 题解 P1379 【八数码难题】

    传送门 用STL中的queue,map,string写了个广搜,用一个string保存状态(见代码)注:STL比较慢,可以做一些优化(或者开O2) #include<iostream> # ...

  5. *运算和&运算

    /* &:取地址运算符 *:指针运算符(或称为间接运算符),取指针所指向的对象的内容 */ int a,b; int *pointer_1, *pointer_2; pointer_1 = & ...

  6. iOS跳转到各种系统设置界面

    定位服务 定位服务有很多APP都有,如果用户关闭了定位,那么,我们在APP里面可以提示用户打开定位服务.点击到设置界面设置,直接跳到定位服务设置界面.代码如下: //定位服务设置界面 NSURL *u ...

  7. PAT 乙级 1048

    题目 题目地址:PAT 乙级 1048 思路 这道题坑的地方在于:即使B的长度小于A,仍然要对B补齐,也就是说最终结果的长度取决于A和B中长度更长的那一项:即只要A.B长度不一致,就要对短的一个进行补 ...

  8. php读取不到https的域名

    因测试环境php遇到无法正常读取到https的域名,但是域名配置了ssl证书,故做如下排查. php测试代码如下 $config['base_url'] = ''; #开启调试模式 #echo &qu ...

  9. token验证机制

    最近在vue-cli项目实现登录的过程中用到了token验证,在此总结如下 1. 登录时,客户端通过用户名与密码请求登录 2. 服务端收到请求去验证用户名与密码 3. 验证通过,服务端会签发一个Tok ...

  10. Python基础——赋值机制

    使用id()函数用于获取对象的内存地址. 使用is来判断是不是指向同一个内存. 把一个对象赋值给另一个对象,两个对象都指向同一个内存地址. test=1000 test1=test id(test) ...