【bzoj4816】[Sdoi2017]数字表格 莫比乌斯反演
题目描述
输入
有多组测试数据。
输出
样例输入
3
2 3
4 5
6 7
样例输出
1
6
960
题解
莫比乌斯反演
$\prod\limits_{i=1}^n\prod\limits_{j=1}^mf(\gcd(i,j))\\=\prod\limits_{d=1}^{min(n,m)}(\prod\limits_{i=1}^n\prod\limits_{j=1}^m[\gcd(i,j)=d]·f(d))\\=\prod\limits_{d=1}^{min(n,m)}f(d)^{\sum\limits_{i=1}^n\sum\limits_{j=1}^m[\gcd(i,j)=d]}\\=\prod\limits_{d=1}^{min(n,m)}f(d)^{\sum\limits_{i=1}^{\lfloor\frac nd\rfloor}\sum\limits_{j=1}^{\lfloor \frac md\rfloor}[\gcd(i,j)=1]}\\=\prod\limits_{d=1}^{min(n,m)}f(d)^{\sum\limits_{i=1}^{\lfloor\frac nd\rfloor}\sum\limits_{j=1}^{\lfloor \frac md\rfloor}\sum\limits_{k|i\&k\&j}\mu(d)}\\=\prod\limits_{d=1}^{min(n,m)}f(d)^{\sum\limits_{k=1}^{min(\lfloor\frac nd\rfloor,\lfloor\frac md\rfloor)}\mu(k)\lfloor\frac n{dk}\rfloor\lfloor\frac m{dk}\rfloor}$
到了这一步我们可以选择分块套分块,不过显然时间复杂度不足以应对多组询问。
继续令$D=dk$,可以得到:
$\prod\limits_{d=1}^{min(n,m)}f(d)^{\sum\limits_{k=1}^{min(\lfloor\frac nd\rfloor,\lfloor\frac md\rfloor)}\mu(k)\lfloor\frac n{dk}\rfloor\lfloor\frac m{dk}\rfloor}\\=\prod\limits_{D=1}^{min(n,m)}(\prod\limits_{d|D}f(d)^{\mu(\frac Dd)})^{\lfloor\frac nD\rfloor\lfloor\frac mD\rfloor}\\=\prod\limits_{D=1}^{min(n,m)}(t(D))^{\lfloor\frac nD\rfloor\lfloor\frac mD\rfloor}\\(t(D)=\prod\limits_{d|D}f(d)^{\mu(\frac Dd)})$
于是线性筛出$\mu$,递推出f,预处理出f的逆元,进而使用$O(n\ln n)$的时间预处理出t数组。这里有一个小技巧:先枚举$\frac Dd$,当它的$\mu$值等于0时不作任何处理。亲测可以有效减少时间。
然后预处理出t数组之后分块处理询问即可。
时间复杂度为O(跑得过)$O(n\ln n+T\sqrt n)$,实际上跑了37s。
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 1000010
using namespace std;
typedef long long ll;
const int k = 1000000 , mod = 1000000007;
int mu[N] , prime[N] , tot;
ll f[N] , inv[N] , t[N] , sum[N];
bool np[N];
ll pow(ll x , ll y)
{
ll ans = 1;
while(y)
{
if(y & 1) ans = ans * x % mod;
x = x * x % mod , y >>= 1;
}
return ans;
}
int main()
{
int i , j , T , n , m;
ll ans;
sum[0] = t[1] = f[1] = inv[1] = mu[1] = 1;
for(i = 2 ; i <= k ; i ++ )
{
t[i] = 1 , f[i] = (f[i - 1] + f[i - 2]) % mod , inv[i] = pow(f[i] , mod - 2) % mod;
if(!np[i]) mu[i] = -1 , prime[++tot] = i;
for(j = 1 ; j <= tot && i * prime[j] <= k ; j ++ )
{
np[i * prime[j]] = 1;
if(i % prime[j] == 0)
{
mu[i * prime[j]] = 0;
break;
}
else mu[i * prime[j]] = -mu[i];
}
}
for(j = 1 ; j <= k ; j ++ )
{
if(!mu[j]) continue;
for(i = 1 ; i * j <= k ; i ++ )
{
if(mu[j] == 1) t[i * j] = t[i * j] * f[i] % mod;
else t[i * j] = t[i * j] * inv[i] % mod;
}
}
for(i = 1 ; i <= k ; i ++ ) sum[i] = sum[i - 1] * t[i] % mod;
scanf("%d" , &T);
while(T -- )
{
scanf("%d%d" , &n , &m) , ans = 1;
for(i = 1 ; i <= n && i <= m ; i = j + 1)
j = min(n / (n / i) , m / (m / i)) , ans = ans * pow(sum[j] * pow(sum[i - 1] , mod - 2) % mod , (ll)(n / i) * (m / i)) % mod;
printf("%lld\n" , ans);
}
return 0;
}
【bzoj4816】[Sdoi2017]数字表格 莫比乌斯反演的更多相关文章
- BZOJ4816 SDOI2017 数字表格 莫比乌斯反演
传送门 做莫比乌斯反演题显著提高了我的\(\LaTeX\)水平 推式子(默认\(N \leq M\),分数下取整,会省略大部分过程) \(\begin{align*} \prod\limits_{i= ...
- [Sdoi2017]数字表格 [莫比乌斯反演]
[Sdoi2017]数字表格 题意:求 \[ \prod_{i=1}^n \prod_{j=1}^m f[(i,j)] \] 考场60分 其实多推一步就推倒了... 因为是乘,我们可以放到幂上 \[ ...
- [bzoj4816][Sdoi2017]数字表格 (反演+逆元)
(真不想做莫比乌斯了) 首先根据题意写出式子 ∏(i=1~n)∏(j=1~m)f[gcd(i,j)] 很明显的f可以预处理出来,解决 根据套路分析,我们可以先枚举gcd(i,j)==d ∏(d=1~n ...
- BZOJ.4816.[SDOI2017]数字表格(莫比乌斯反演)
题目链接 总感觉博客园的\(Markdown\)很..\(gouzhi\),可以看这的. 这个好像简单些啊,只要不犯sb错误 [Update] 真的算反演中比较裸的题了... \(Descriptio ...
- BZOJ 4816 [Sdoi2017]数字表格 ——莫比乌斯反演
大力反演出奇迹. 然后xjb维护. 毕竟T1 #include <map> #include <ctime> #include <cmath> #include & ...
- luogu3704 [SDOI2017]数字表格(莫比乌斯反演)
link 设\(f_0=0,f_1=1,f_n=f_{n-1}+f_{n-2}(n\ge 2)\) 求\(\prod_{i=1}^n\prod_{j=1}^mf_{\gcd(i,j)}\),多组询问, ...
- [BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块)
[BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块) 题面 求 \[\sum_{i=1}^{n} \sum_{j=1}^{m} \mathrm{lcm}(i,j)\] 分析 \[\su ...
- [SDOI2017]数字表格 --- 套路反演
[SDOI2017]数字表格 由于使用markdown的关系 我无法很好的掌控格式,见谅 对于这么简单的一道题竟然能在洛谷混到黑,我感到无语 \[\begin{align*} \prod\limits ...
- 【BZOJ4816】【SDOI2017】数字表格 [莫比乌斯反演]
数字表格 Time Limit: 50 Sec Memory Limit: 128 MB[Submit][Status][Discuss] Description Doris刚刚学习了fibonac ...
随机推荐
- hihoCoder #1050 : 树中的最长路
题意: 求出树上最长路径的长度,并返回. 思路: 刚看到数据<=10^5,假如是单分支的树,那么有5万层,就不能递归,那就用桟实现, 那就要将长度信息保存在另开的数组中,很麻烦!!这题专门给递归 ...
- 使Win10用户获得特殊权限以便删除相应文件(夹)
依次访问: 本地用户和组(右击“此电脑”): 用户: 右击:当前用户名: 属性: 添加: 输入:System Managed Accounts Group: 检查名称(可选): 确定: 重启电脑. 参 ...
- DROP RULE - 删除一个重写规则
SYNOPSIS DROP RULE name ON relation [ CASCADE | RESTRICT ] DESCRIPTION 描述 DROP RULE 删除一个规则. PARAMETE ...
- DB2中创建表
CONNECT TO TEST; CREATE TABLE DB2ADMIN.PERSON ( ID BIGINT NOT NULL , NAME BIGINT , FLAG BIGINT , ADD ...
- 约束Constraints
1.setNeedsUpdateConstraints:当想要调整子视图布局时,在主线程调用该方法标记constraint需要在未来的某个点更新(该方法不会立刻强制刷新constraint,而是等待下 ...
- Codevs1033 蚯蚓的游戏
题目描述 Description 在一块梯形田地上,一群蚯蚓在做收集食物游戏.蚯蚓们把梯形田地上的食物堆积整理如下: a(1,1) a(1,2)…a(1,m) a(2,1) a(2,2) a(2 ...
- NOIP模拟赛 篮球比赛1
篮球比赛1(basketball1.*) Czhou为了提高机房里各种神牛的身体素质,决定在每次训练后举行篮球比赛.为了保持比赛公平,Czhou要将神牛们分成两队.首先神牛们赛前都要排成固定的队伍:然 ...
- Python自学笔记_
1. if语句 判断语句. 1 a=2 2 b=3 3 if a>b: 4 print("a>b") 5 else: 6 print("a<b" ...
- python入门:从安装python开始
python简介: Python (英国发音:/ˈpaɪθən/ 美国发音:/ˈpaɪθɑːn/), 是一种面向对象的解释型计算机程序设计语言,由荷兰人Guido van Rossum于1989年发明 ...
- 使用GD库做图片水印
png图片作为水印加到其他类型图片后,背景变黑色 原因: imagecopy函数拷贝时可以保留png图像的原透明信息,而imagecopymerge却不支持图片的本身的透明拷贝. 然后直接上代码: / ...