树的直径新求法、codeforces 690C3 Brain Network (hard)
树的直径新求法
讲解题目
今天考了一道题目,下面的思路二是我在考场上原创,好像没人想到这种做法,最原始的题目,考场上的题目是这样的:
你现在有1 个节点,他的标号为1,每次加入一个节点,第i 次加入的节点标号为i+1,且每次加入的节点父亲为已经存在的节点。你需要在每次加入节点后输出当前树的直径。
大意:给你$n$个点,最开始时只有一个点,一号节点,然后每一次把第$i$号节点和编号比他小的节点相连,连接一个点后,求树的直径。
样例输入
第一行一个整数n。接下来n-1 行,第i+1 行一个数表示标号为i+1 的点的父亲。
6
1
2
2
1
5
样例输出
一行n-1 个数,第i 个数表示加入i+1 号点后树的直径。
1 2 2 3 4
思路
先说一下常规的做法,我们看一下题目,会发现一个性质,很好的性质。在每一次加点之后,只有三种情况产生,第一种就是几点之后没有什么用,树的直径还是之前那个;第二种情况就是当前点和上一次的一个端点组成;而最后一种和第二种一样,只是是和另一个端点。用字母表示一下就是:设当前直径的表示方法为$(x1,x2)$,表示的是以$x1,x2$为两个端点的链。设新加进来的点为$y$,则新产生的树的直径只有三种情况:$(x1,y)$、$(y,x2)$、$(x1,x2)$。只需要维护一个倍增lca 和每个点的深度就行啦。这个不难想到(对与大佬们来说,像我这样的蒟蒻就没想到)。
虽然我没有想到,但是我自创了另一种做法。我们设$f[i]$表示的是以$i$号节点为根的子树中以$i$为端点的最长长度。这样我们计算答案时就很好计算了,我们只需要把新加进来的点旋转到整棵树的根,并更新$f$数组的值,把新加进来的点的$f$数组的值和上一个直径进行对比,去最大值就可以啦。难点就是旋转,大家还记的splay的旋转吗,这道题的旋转和splay的旋转的思路差不多,都是把儿子旋上去。但是相对而言这个更简单,因为我们不需要存他的儿子有谁,只需要存父亲就好了,但是我们发现旋转的时候旋下来的点的$f$数组的值会改变,所以我们需要重新更新。怎么更新呢?我们每一次都在和当前旋下来的点有一条边相连的所有点中选取$f$值最大的,并加一赋值,但有一个细节,就是这些点中不能包括要选上去的点。每一次更新就好啦。
时间分析
可能有人会问,这个不是$O(N^2)$的时间复杂度吗?虽然是期望$log_2^n$层,但是数据卡一卡就能卡成链,退化成$N^2$的算法啦。但是不要忘记,我们是有旋转操作的,旋来旋去,就成了一棵类似于平衡树的东西,因为你也不知道怎么旋,在没看代码的情况下,所以数据你做不出来,哈哈。再想一想,splay的精妙之处不也是这里吗?因为旋转成了平衡树。结束,时间复杂的$O(n*log_2^n)$。是不是很好?
代码
#include <stdio.h>
#include <algorithm>
using namespace std;
#define N 200001
int head[N],to[N*2],nxt[N*2];
int ans,idx,n;
int f[N];
int lenth[N];
void add(int a,int b)
{nxt[++idx]=head[a],head[a]=idx,to[idx]=b;}
void change(int p,int from)
{
if(f[p]) change(f[p],p);
lenth[p]=0;
for(int i=head[p];i;i=nxt[i])
if(to[i]!=from)
lenth[p]=max(lenth[p],lenth[to[i]]+1);
f[p]=from;
}
int main()
{
scanf("%d",&n);
for(int i=2;i<=n;i++)
{
scanf("%d",&f[i]),add(f[i],i),add(i,f[i]);
change(f[i],i),lenth[i]=lenth[f[i]]+1,f[i]=0;
ans=max(ans,lenth[i]);
printf("%d ",ans);
}
}
有不懂得,可以发评论提问,这种做法纯属原创。
树的直径新求法、codeforces 690C3 Brain Network (hard)的更多相关文章
- codeforces 690C3 Brain Network
simple:并查集一下 #include <vector> #include <iostream> #include <queue> #include <c ...
- 树的直径的求法即相关证明【树形DP || DFS】
学习大佬:树的直径求法及证明 树的直径 定义: 一棵树的直径就是这棵树上存在的最长路径. 给定一棵树,树中每条边都有一个权值,树中两点之间的距离定义为连接两点的路径边权之和.树中最远的两个节点之间的距 ...
- CF 690C3. Brain Network (hard) from Helvetic Coding Contest 2016 online mirror (teams, unrated)
题目描述 Brain Network (hard) 这个问题就是给出一个不断加边的树,保证每一次加边之后都只有一个连通块(每一次连的点都是之前出现过的),问每一次加边之后树的直径. 算法 每一次增加一 ...
- CodeForces 690C1 Brain Network (easy) (水题,判断树)
题意:给定 n 条边,判断是不是树. 析:水题,判断是不是树,首先是有没有环,这个可以用并查集来判断,然后就是边数等于顶点数减1. 代码如下: #include <bits/stdc++.h&g ...
- CodeForces 690C2 Brain Network (medium)(树上DP)
题意:给定一棵树中,让你计算它的直径,也就是两点间的最大距离. 析:就是一个树上DP,用两次BFS或都一次DFS就可以搞定.但两次的时间是一样的. 代码如下: #include<bits/std ...
- hdoj 4612 Warm up【双连通分量求桥&&缩点建新图求树的直径】
Warm up Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others)Total Su ...
- CodeForces 379F 树的直径 New Year Tree
题意:每次操作新加两个叶子节点,每次操作完以后询问树的直径. 维护树的直径的两个端点U,V,每次计算一下新加进来的叶子节点到U,V两点的距离,如果有更长的就更新. 因为根据树的直径的求法,若出现新的直 ...
- Gym - 100781A Adjoin the Networks (树的直径)
题意: n个点,m条边,m <= n <= 100000,边的长度都为1. 点从 0 ~ n-1 编号.开始时图是不连通的,并且没有环. 通过加入一些边后,可以使图连通.要求加入的边不能多 ...
- 树的直径&树的重心
树的直径 定义 那么树上最远的两个点,他们之间的距离,就被称之为树的直径. 树的直径的性质 1. 直径两端点一定是两个叶子节点. 2. 距离任意点最远的点一定是直径的一个端点,这个基于贪心求直径方法的 ...
随机推荐
- 批处理文件执行cmd命令
@echo offstart "wumin" "C:\Windows\System32\cmd.exe" osk taskkill /f /im cmd.exe ...
- 4 Template层-CSRF
1.csrf 全称Cross Site Request Forgery,跨站请求伪造 某些恶意网站上包含链接.表单按钮或者JavaScript,它们会利用登录过的用户在浏览器中的认证信息试图在你的网站 ...
- 如何排查Java内存泄漏?看完我给跪了!
没有经验的程序员经常认为Java的自动垃圾回收完全使他们免于担心内存管理.这是一个常见的误解:虽然垃圾收集器做得很好,但即使是最好的程序员也完全有可能成为严重破坏内存泄漏的牺牲品.让我解释一下. 当不 ...
- 【Jump Game II 】cpp
题目: Given an array of non-negative integers, you are initially positioned at the first index of the ...
- 【POJ 3764】The Xor-longest Path
题目 给定一个\(n\)个点的带权无根树,求树上异或和最大的一条路径. \(n\le 10^5\) 分析 一个简单的例子 相信大家都做过这题: 给定一个\(n\)个点的带权无根树,有\(m\)个询问, ...
- 简单实现nodejs爬虫工具
约30行代码实现一个简单nodejs爬虫工具,定时抓取网页数据. 使用npm模块 request---简单http请求客户端.(轻量级) fs---nodejs文件模块. index.js var ...
- 使用 Anime 类在 XNA 中创建小动画(十一)
平方已经开发了一些 Windows Phone 上的一些游戏,算不上什么技术大牛.在这里分享一下经验,仅为了和各位朋友交流经验.平方会逐步将自己编写的类上传到托管项目中,没有什么好名字,就叫 WPXN ...
- java自动化测试开发环境搭建(更新至2018年10月8日 11:42:15)
1.安装JDK的1.8版本 官网下载地址:https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151 ...
- OV7725学习之SCCB协议(一)
OV7725摄像头只能作为从机,通过SCCB协议配置内置的172个寄存器.因此首先要了解的就是SCCB总线 1.SCCB协议简述 SCCB协议有两线也有三线,两线为SIO_C与SIO_D,三线为SIO ...
- Leetcode 561.数组拆分I
数组拆分 I 给定长度为 2n 的数组, 你的任务是将这些数分成 n 对, 例如 (a1, b1), (a2, b2), ..., (an, bn) ,使得从1 到 n 的 min(ai, bi) 总 ...