洛谷——P2626 斐波那契数列(升级版)
P2626 斐波那契数列(升级版)
题目背景
大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数)。
题目描述
请你求出第n个斐波那契数列的数mod(或%)2^31之后的值。并把它分解质因数。
输入输出格式
输入格式:
n
输出格式:
把第n个斐波那契数列的数分解质因数。
输入输出样例
5
5=5
6
8=2*2*2
说明
n<=48
矩阵乘法加速斐波那契+质因数分解
#include<cstdio> #include<cstring> #include<iostream> #include<algorithm> using namespace std; <<; int n,answer,s; struct Node { ][]; Node(){memset(m,,sizeof(m));} }mb,ans; Node operator*(Node a,Node b) { Node c; ;i<=;i++) ;j<=;j++) ;k<=;k++) c.m[i][j]=(c.m[i][j]%mod+a.m[i][k]*b.m[k][j]%mod)%mod; return c; } int read() { ,f=; char ch=getchar(); ;ch=getchar();} +ch-',ch=getchar(); return x*f; } int main() { n=read(); ans.m[][]=ans.m[][]=; mb.m[][]=mb.m[][]=mb.m[][]=; while(n) { ) ans=ans*mb; mb=mb*mb;n>>=; } answer=ans.m[][]; printf("%d=",answer); ;i<=answer;i++) { ) { s++;answer/=i; ) printf("*"); printf("%d",i); } } ; }
洛谷——P2626 斐波那契数列(升级版)的更多相关文章
- 洛谷——P2626 斐波那契数列(升级版)矩阵
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数). 题目描述 ...
- 洛谷 P2626 斐波那契数列(升级版)
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数). 题目描述 ...
- [洛谷P2626]斐波那契数列(升级版)
题目大意:请你求出第$n$个斐波那契数列的数$mod 2^{31}$之后的值.并把它分解质因数. 题解:乱搞 卡点:1.忘记取模 C++ Code: #include<cstdio> #i ...
- 洛谷P1962 斐波那契数列【矩阵运算】
洛谷P1962 斐波那契数列[矩阵运算] 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) ( ...
- 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]
P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...
- 洛谷——P1962 斐波那契数列
P1962 斐波那契数列 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 ...
- 洛谷—— P1962 斐波那契数列
https://www.luogu.org/problem/show?pid=1962 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f ...
- 洛谷P1962 斐波那契数列(矩阵快速幂)
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...
- 洛谷P1962 斐波那契数列题解
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...
随机推荐
- windows server 2008解决无法PING通问题
今天安装服务器(server 2008),配置完IP地址后,发现局域网其它电脑无法PING通服务器,测线仪测试链路都正常,网线接别的电脑也正常,以为是网卡问题,于是ping了自己的IP,发现能PING ...
- 4 Template层- HTML转义
1.HTML转义 Django对字符串进行自动HTML转义,如在模板中输出如下值: 视图代码: def index(request): return render(request, 'temtest/ ...
- json对象数据列数
// var len = data.length(); // alert(data.Rows.length); var colCount = (function count(){//一条记录中有几个键 ...
- Quorum机制与NRW算法总结
Quorum机制与NRW算法总结 1.Quorum机制 Quorum,原指为了处理事务.拥有做出决定的权力而必须出席的众议员或参议员的数量(一般指半数以上). 2.NRW算法 NRW算法是基于Quor ...
- php伪随机数漏洞 以及脚本php_mt_seed的使用教程
前几天在群里看到了一个题目,发现自己没有接触过这个伪随机数这个漏洞,在此记录下. 搜索这两个函数 mt_scrand() mt_rand() mt_scrand(seed)这个函数的意思,是通过分发s ...
- android studio首个项目碰到的一些问题
一开始,我用的是android studio3.1,碰到Get “.gradle”的问题.解决方法是https://www.zhihu.com/question/37810416.在project中的 ...
- Summary—【base】(HTML)
Html知识点: 1. 建议开发人员计算机基本配置 a) 显示所有文件的后缀名* b) 文件的排列方式改为详细信息,并且名称一定要能够全部显示出来 c) 使用小的任务栏 d) 将常用的工具锁定到任务栏 ...
- BZOJ 1787: [Ahoi2008]Meet 紧急集合(lca+贪心)
[Ahoi2008]Meet 紧急集合 Description Input Output Sample Input 6 4 1 2 2 3 2 4 4 5 5 6 4 5 6 6 3 1 2 4 4 ...
- 流浪者(rover)
流浪者(rover) 题目描述 有一位流浪者正在一个n∗mn∗m的网格图上流浪.初始时流浪者拥有SS点体力值. 流浪者会从(1,1)(1,1)走向(n,m)(n,m),并且他只会向下走((x,y)→( ...
- python 读取文件夹下的图片进行处理
python的os模块中有一个listdir函数可以遍历读取文件夹下的文件. import os for filename in os.listdir(r"./file"): #l ...