23种GOF设计模式一般分为三大类:创建型模式、结构型模式、行为模式。

创建型模式抽象了实例化过程。它们帮助一个系统独立于怎样创建、组合和表示它的那些对象。一个类创建型模式使用继承改变被实例化的类,而一个对象创建型模式将实例化托付给还有一个对象。

创建型模式有两个不断出现的主旋律。第一。它们都将关于该系统使用哪些详细的类的信息封装起来。第二。它们隐藏了这些类的实例是怎样被创建和放在一起的。整个系统关于这些对象所知道的是由抽象类所定义的接口。

因此,创建型模式在什么被创建。谁创建它,它是怎样被创建的,以及何时创建这些方面给予了非常大的灵活性。它们同意用结构和功能区别非常大的“产品”对象配置一个系统。配置能够是静态的(即在编译时指定),也能够是动态的(在执行时)。

结构型模式涉及到怎样组合类和对象以获得更大的结构。结构型类模式採用继承机制来组合接口或实现。结构型对象模式不是对接口和实现进行组合。而是描写叙述了怎样对一些对象进行组合。从而实现新功能的一些方法。由于能够在执行时刻改变对象组合关系,所以对象组合方式具有更大的灵活性。而这样的机制用静态类组合是不可能实现的。

行为模式涉及到算法和对象间职责的分配。行为模式不仅描写叙述对象或类的模式,还描写叙述它们之间的通信模式。

这些模式刻画了在执行时难以跟踪的复杂的控制流。它们将用户的注意力从控制流转移到对象间的联系方式上来。行为类模式使用继承机制在类间分派行为。行为对象模式使用对象复合而不是继承。

一些行为对象模式描写叙述了一组对等的对象怎样相互协作以完毕当中任一个对象都无法单独完毕的任务。

创建型模式包含:1、FactoryMethod(工厂方法模式);2、Abstract Factory(抽象工厂模式);3、Singleton(单例模式);4、Builder(建造者模式、生成器模式)。5、Prototype(原型模式).

结构型模式包含:6、Bridge(桥接模式)。7、Adapter(适配器模式);8、Decorator(装饰模式);9、Composite(组合模式)。10、Flyweight(享元模式);11、Facade(外观模式);12、Proxy(代理模式).

行为模式包含:13、TemplateMethod(模板方法模式);14、Strategy(策略模式);15、State(状态模式)。16、Observer(观察者模式);17、Memento(备忘录模式)。18、Mediator(中介者模式);19、Command(命令模式);20、Visitor(訪问者模式);21、Chain of Responsibility(责任链模式);22、Iterator(迭代器模式);23、Interpreter(解释器模式).

Factory Method:定义一个用于创建对象的接口,让子类决定将哪一个类实例化。Factory Method使一个类的实例化延迟到其子类。

Abstract Factory:提供一个创建一系列相关或相互依赖对象的接口,而无需指定他们详细的类。

Singleton:保证一个类仅有一个实例。并提供一个訪问它的全局訪问点。

Builder:将一个复杂对象的构建与它的表示分离。使得相同的构建过程能够创建不同的表示。

Prototype:用原型实例指定创建对象的种类,并且通过拷贝这个原型来创建新的对象。

Bridge:将抽象部分与它的实现部分分离,使它们都能够独立地变化。

Adapter:将一个类的接口转换成客户希望的另外一个接口。Adapter模式使得原本由于接口不兼容而不能一起工作的那些类能够一起工作。

Decorator:动态地给一个对象加入一些额外的职责。

就扩展功能而言, Decorator模式比生成子类方式更为灵活。

Composite:将对象组合成树形结构以表示“部分-总体”的层次结构。

Composite使得客户对单个对象和复合对象的使用具有一致性。

Flyweight:运用共享技术有效地支持大量细粒度的对象。

Facade:为子系统中的一组接口提供一个一致的界面。 Facade模式定义了一个高层接口。这个接口使得这一子系统更加easy使用。

Proxy:为其它对象提供一个代理以控制对这个对象的訪问。

Template Method:定义一个操作中的算法的骨架,而将一些步骤延迟到子类中。Template Method使得子类能够不改变一个算法的结构就可以重定义该算法的某些特定步骤。

Strategy:定义一系列的算法,把它们一个个封装起来, 并且使它们可相互替换。

本模式使得算法的变化可独立于使用它的客户。

State:同意一个对象在其内部状态改变时改变它的行为。

对象看起来似乎改动了它所属的类。

Observer:定义对象间的一种一对多的依赖关系,以便当一个对象的状态发生改变时,全部依赖于它的对象都得到通知并自己主动刷新。

Memento:在不破坏封装性的前提下,捕获一个对象的内部状态。并在该对象之外保存这个状态。这样以后就可将该对象恢复到保存的状态。

Mediator:用一个中介对象来封装一系列的对象交互。

中介者使各对象不须要显式地相互引用,从而使其耦合松散。并且能够独立地改变它们之间的交互。

Command:将一个请求封装为一个对象,从而使你可用不同的请求对客户进行參数化。对请求排队或记录请求日志,以及支持可取消的操作。

Visitor:表示一个作用于某对象结构中的各元素的操作。它使你能够在不改变各元素的类的前提下定义作用于这些元素的新操作。

Chain of Responsibility:为解除请求的发送者和接收者之间耦合。而使多个对象都有机会处理这个请求。将这些对象连成一条链,并沿着这条链传递该请求,直到有一个对象处理它。

Iterator:提供一种方法顺序訪问一个聚合对象中各个元素, 而又不需暴露该对象的内部表示。

Interpreter:给定一个语言, 定义它的文法的一种表示,并定义一个解释器, 该解释器使用该表示来解释语言中的句子。

Mediator:(1)、意图:用一个中介对象来封装一系列的对象交互。

中介者使各对象不须要显式地相互引用。从而使其耦合松散,并且能够独立地改变它们之间的交互。

(2)、适用性:A、一组对象以定义良好可是复杂的方式进行通信。产生的相互依赖关系结构混乱且难以理解。B、一个对象引用其它非常多对象并且直接与这些对象通信,导致难以复用该对象。

C、想定制一个分布在多个类中的行为,而又不想生成太多的子类。

(3)、优缺点:A、降低了子类生成:Mediator将原本分布于多个对象间的行为集中在一起。改变这些行为仅仅需生成Mediator的子类就可以。

这样各个Colleague类可被重用。B、它将各Colleague解耦:Mediator有利于各Colleague间的松耦合。你能够独立的改变和复用各Colleague类和Mediator类。C、它简化了对象协议:用Mediator和各Colleague间的一对多的交互来取代多对多的交互。

一对多的关系更易于理解、维护和扩展。D、它对对象怎样协作进行了抽象:将中介作为一个独立的概念并将其封装在一个对象中。使你将注意力从对象各自本身的行为转移到它们之间的交互上来。这有助于弄清楚一个系统中的对象是怎样交互的。E、它使控制集中化:中介者模式将交互的复杂性变为中介者的复杂性。

由于中介者封装了协议。它可能变得比任一个Colleague都复杂。这可能使得中介者自身成为一个难于维护的庞然大物。

(4)、相关模式:A、Facade与中介者的不同之处在于它是对一个对象子系统进行抽象,从而提供了一个更为方便的接口。

它的协议是单向的,即Facade对象对这个子系统类提出请求,但反之则不行。相反,Mediator提供了各Colleague对象不支持或不能支持的协作行为,并且协议是多向的。

B、Colleague可使用Observer模式与Mediator通信。

(5)、Mediator模式提供将对象间的交互和通讯封装在一个类中。各个对象间的通信不必显式去声明和引用,大大降低了系统的复杂性能。

另外,Mediator模式还带来了系统对象间的松耦合。

演示样例代码1:

#include <iostream>
#include <string>
#include <vector> using namespace std; class Colleague; //中介者类
class Mediator
{
public:
virtual void Send(string message, Colleague* col) = 0;
}; //抽象同事类
class Colleague
{
protected:
Mediator* mediator;
public:
Colleague(Mediator* temp)
{
mediator = temp;
}
}; //同事一
class Colleague1 : public Colleague
{
public:
Colleague1(Mediator* media) : Colleague(media) {} void Send(string strMessage)
{
mediator->Send(strMessage, this);
} void Notify(string strMessage)
{
cout<<"同事一获得了消息"<<strMessage<<endl;
}
}; //同事二
class Colleague2 : public Colleague
{
public:
Colleague2(Mediator* media) : Colleague(media) {} void Send(string strMessage)
{
mediator->Send(strMessage, this);
} void Notify(string strMessage)
{
cout<<"同事二获得了消息"<<strMessage<<endl;
}
}; //详细中介者类
class ConcreteMediator : public Mediator
{
public:
Colleague1* col1;
Colleague2* col2; virtual void Send(string message, Colleague* col)
{
if (col == col1)
col2->Notify(message);
else
col1->Notify(message);
}
}; //client
int main()
{
ConcreteMediator* m = new ConcreteMediator(); //让同事认识中介
Colleague1* col1 = new Colleague1(m);
Colleague2* col2 = new Colleague2(m); //让中介认识详细的同事类
m->col1 = col1;
m->col2 = col2; col1->Send("吃饭了吗?");
col2->Send("还没吃,你请吗?"); /*result
同事二获得了消息吃饭了吗?
同事一获得了消息还没吃,你请吗?
*/ return 0;
}

演示样例代码2:

Colleaugue.h:

#ifndef _COLLEAGUE_H_
#define _COLLEAGUE_H_ #include <string> using namespace std; class Mediator; class Colleague
{
public:
virtual ~Colleague();
virtual void Action() = 0;
virtual void SetState(const string& sdt) = 0;
virtual string GetState() = 0;
protected:
Colleague();
Colleague(Mediator* mdt);
Mediator* _mdt;
private:
}; class ConcreteColleagueA : public Colleague
{
public:
ConcreteColleagueA();
ConcreteColleagueA(Mediator* mdt);
~ConcreteColleagueA();
void Action();
void SetState(const string& std);
string GetState();
protected:
private:
string _sdt;
}; class ConcreteColleagueB : public Colleague
{
public:
ConcreteColleagueB();
ConcreteColleagueB(Mediator* mdt);
~ConcreteColleagueB();
void Action();
void SetState(const string& sdt);
string GetState();
protected:
private:
string _sdt;
}; #endif//~_COLLEAGUE_H_

Colleague.cpp:

#include "Mediator.h"
#include "Colleague.h"
#include <iostream> using namespace std; Colleague::Colleague()
{
//_sdt = "";
} Colleague::Colleague(Mediator* mdt)
{
this->_mdt = mdt;
//_sdt = "";
} Colleague::~Colleague()
{ } ConcreteColleagueA::ConcreteColleagueA()
{ } ConcreteColleagueA::~ConcreteColleagueA()
{ } ConcreteColleagueA::ConcreteColleagueA(Mediator* mdt) : Colleague(mdt)
{ } string ConcreteColleagueA::GetState()
{
return _sdt;
} void ConcreteColleagueA::SetState(const string& sdt)
{
_sdt = sdt;
} void ConcreteColleagueA::Action()
{
_mdt->DoActionFromAtoB(); cout<<"State of ConcreteColleagueA:"<<this->GetState()<<endl;
} ConcreteColleagueB::ConcreteColleagueB()
{ } ConcreteColleagueB::~ConcreteColleagueB()
{ } ConcreteColleagueB::ConcreteColleagueB(Mediator* mdt) : Colleague(mdt)
{
#ifndef _MEDIATOR_H_
#define _MEDIATOR_H_ class Colleague; class Mediator
{
public:
virtual ~Mediator();
virtual void DoActionFromAtoB() = 0;
virtual void DoActionFromBtoA() = 0;
protected:
Mediator();
private:
}; class ConcreteMediator : public Mediator
{
public:
ConcreteMediator();
ConcreteMediator(Colleague* clgA, Colleague* clgB);
~ConcreteMediator();
void SetConcreteColleagueA(Colleague* clgA);
void SetConcreteColleagueB(Colleague* clgB);
Colleague* GetConcreteColleagueA();
Colleague* GetConcreteColleagueB();
void IntroColleague(Colleague* clgA, Colleague* clgB);
void DoActionFromAtoB();
void DoActionFromBtoA();
protected:
private:
Colleague* _clgA;
Colleague* _clgB;
}; #endif//~_MEDIATOR_H_

}void ConcreteColleagueB::Action(){_mdt->DoActionFromBtoA();cout<<"State of ConcreteColleagueB:"<<this->GetState()<<endl;}string ConcreteColleagueB::GetState(){return _sdt;}void ConcreteColleagueB::SetState(const string& sdt){_sdt = sdt;}

Mediator.h:

#ifndef _MEDIATOR_H_
#define _MEDIATOR_H_ class Colleague; class Mediator
{
public:
virtual ~Mediator();
virtual void DoActionFromAtoB() = 0;
virtual void DoActionFromBtoA() = 0;
protected:
Mediator();
private:
}; class ConcreteMediator : public Mediator
{
public:
ConcreteMediator();
ConcreteMediator(Colleague* clgA, Colleague* clgB);
~ConcreteMediator();
void SetConcreteColleagueA(Colleague* clgA);
void SetConcreteColleagueB(Colleague* clgB);
Colleague* GetConcreteColleagueA();
Colleague* GetConcreteColleagueB();
void IntroColleague(Colleague* clgA, Colleague* clgB);
void DoActionFromAtoB();
void DoActionFromBtoA();
protected:
private:
Colleague* _clgA;
Colleague* _clgB;
}; #endif//~_MEDIATOR_H_

Mediator.cpp:

#include "Mediator.h"
#include "Colleague.h" Mediator::Mediator()
{ } Mediator::~Mediator()
{ } ConcreteMediator::ConcreteMediator()
{ } ConcreteMediator::~ConcreteMediator()
{ } ConcreteMediator::ConcreteMediator(Colleague* clgA, Colleague* clgB)
{
this->_clgA = clgA;
this->_clgB = clgB;
} void ConcreteMediator::DoActionFromAtoB()
{
_clgB->SetState(_clgA->GetState());
} void ConcreteMediator::SetConcreteColleagueA(Colleague* clgA)
{
this->_clgA = clgA;
} void ConcreteMediator::SetConcreteColleagueB(Colleague* clgB)
{
this->_clgB = clgB;
} Colleague* ConcreteMediator::GetConcreteColleagueA()
{
return _clgA;
} Colleague* ConcreteMediator::GetConcreteColleagueB()
{
return _clgB;
} void ConcreteMediator::IntroColleague(Colleague* clgA, Colleague* clgB)
{
this->_clgA = clgA;
this->_clgB = clgB;
} void ConcreteMediator::DoActionFromBtoA()
{
_clgA->SetState(_clgB->GetState());
}

main.cpp:

#include "Mediator.h"
#include "Colleague.h"
#include <iostream> using namespace std; int main()
{
ConcreteMediator* m = new ConcreteMediator();
ConcreteColleagueA* c1 = new ConcreteColleagueA(m);
ConcreteColleagueB* c2 = new ConcreteColleagueB(m); m->IntroColleague(c1, c2); c1->SetState("old");
c2->SetState("old");
c1->Action();
c2->Action();
cout<<endl; c1->SetState("new");
c1->Action();
c2->Action();
cout<<endl; c2->SetState("old");
c2->Action();
c1->Action(); /*result
State of ConcreteColleagueA:old
State of ConcreteColleagueB:old State of ConcreteColleagueA:new
State of ConcreteColleagueB:new State of ConcreteColleagueB:old
State of ConcreteColleagueA:old
*/ return 0;
}

中介者模式结构图:

參考文献:

1、《大话设计模式C++》

2、《设计模式精解----GoF23种设计模式解析》

3、《设计模式----可复用面向对象软件的基础》

设计模式之中介者模式(Mediator)摘录的更多相关文章

  1. 乐在其中设计模式(C#) - 中介者模式(Mediator Pattern)

    原文:乐在其中设计模式(C#) - 中介者模式(Mediator Pattern) [索引页][源码下载] 乐在其中设计模式(C#) - 中介者模式(Mediator Pattern) 作者:weba ...

  2. 二十四种设计模式:中介者模式(Mediator Pattern)

    中介者模式(Mediator Pattern) 介绍用一个中介对象来封装一系列的对象交互.中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互. 示例有一个Messa ...

  3. [设计模式] 17 中介者模式 Mediator Pattern

    在GOF的<设计模式:可复用面向对象软件的基础>一书中对中介者模式是这样说的:用一个中介对象来封装一系列的对象交互.中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变 ...

  4. 大熊君说说JS与设计模式之------中介者模式Mediator

    一,总体概要 1,笔者浅谈 我们从日常的生活中打个简单的比方,我们去房屋中介租房,房屋中介人在租房者和房东出租者之间形成一条中介.租房者并不关心他租谁的房.房东出租者也不关心他租给谁.因为有中介的存在 ...

  5. 设计模式 笔记 中介者模式 Mediator

    //---------------------------15/04/27---------------------------- //Mediator 中介者模式----对象行为型模式 /* 1:意 ...

  6. 行为型设计模式之中介者模式(Mediator)

    结构 意图 用一个中介对象来封装一系列的对象交互.中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互. 适用性 一组对象以定义良好但是复杂的方式进行通信.产生的相互 ...

  7. 【设计模式】—— 中介者模式Mediator

    前言:[模式总览]——————————by xingoo 模式意图 使用一个中介的对象,封装一组对象之间的交互,这样这些对象就可以不用彼此耦合. 这个中介者常常起着中间桥梁的作用,使其他的对象可以利用 ...

  8. 设计模式之中介者模式(Mediator)

    中间者模者模式原理:中介者维持所有要交互对象的指针或者对象,所有对象维持一个中介者的指针或者对象. #include <iostream> #include <string> ...

  9. 【转】设计模式 ( 十五 ) 中介者模式Mediator(对象行为型)

    设计模式 ( 十五 ) 中介者模式Mediator(对象行为型) 1.概述 在面向对象的软件设计与开发过程中,根据"单一职责原则",我们应该尽量将对象细化,使其只负责或呈现单一的职 ...

随机推荐

  1. LoadRunner 手动关联

    步骤: 1.同样的流程录制两遍,保存在不同的项目中, 2.点击Tools >> Compare with Script 3.选择要比对的脚本 3.找辨识码 4.打开辨识码所在网页,查看源代 ...

  2. 【java基础 14】锁的粒度:ThreadLocal、volatile、Atomic和Synchronized

    导读:题目中提到的几个关键字,分别是解决并发问题中,加锁所使用到的几个关键字,每个关键字代表的锁的粒度 不同,本篇博客,主要是从概念定义上,区分这几个关键字的应用场景.(PS:睡梦中,依稀记得有回面试 ...

  3. Rust 内存管理

    Rust 内存管理 Rust 与其他编程语言相比,最大的亮点就是引入了一套在编译期间,通过静态分析的方式,确定所有对象的作用域与生命周期,从而可以精确的在某个对象不再被使用时,将其销毁,并且不引入任何 ...

  4. Java如何获取ISO 8601时间

    DateFormat df = new SimpleDateFormat("yyyy-MM-dd'T'HH:mm:ss.SSS'Z'"); df.setTimeZone(TimeZ ...

  5. storage存储对象和数组类型时候的问题

    storage类型存储的类型为字符串,直接使用localstorage.setItem方法存储进去,取出来的时候数据是不能够使用的 解决方法: 先使用JSON.stringify方法转换成为字符串,然 ...

  6. stein法求gcd 学习笔记

    原理显然 由于当x,y都为奇数时进行辗转相见 每次减完必有偶数 而偶数最多除log次 那么也最多减log次 复杂度有保证 注:代码未验证 int gcd(int x,int y){ int res=1 ...

  7. hdu 3478 Catch 二分图染色

    题目链接 题意 小偷逃跑,从某个点出发,每下一个时刻能够跑到与当前点相邻的点. 问是否存在某一个时刻,小偷可能在图中的任意一个点出现. 思路 结论 如果该图为连通图且不为二分图,则可能,否则不可能. ...

  8. C++ 构造函数 析构函数 虚函数

    C++:构造函数和析构函数能否为虚函数? 简单回答是:构造函数不能为虚函数,而析构函数可以且常常是虚函数. (1) 构造函数不能为虚函数 让我们来看看大牛C++之父 Bjarne Stroustrup ...

  9. 四、 java循环结构

    for循环结构: 格式:①初始化条件;②循环条件;③迭代条件;④循环体 for(①;②;③){ //④ } 执行过程:①-②-④-③-②-④-③-...-④-③-②,直至循环条件不满足,退出当前的循环 ...

  10. docker mysql 导入导出数据

    导出数据 1.导出mysql单张表结构和数据: docker exec -it my-mysql mysqldump dbname -uroot -p123456 --tables tname > ...