BZOJ1566 【NOI2009】管道取珠
这是一道DP神题,直到我写下这句题解时也没有想明白……
首先,这道题要我们求所有(不同输出序列的方案数)的平方和,于是我们当然就想到求所有不同输出序列的方案数……(大雾) 。这道题一个巧妙的地方就在于对问题的转化。(以下摘自BYVoid大神的题解)
假设同时有两个人X & Y在玩这个游戏,设X从up取了i个珠子(不一定连续),从down取了j个珠子,取出来的珠子组成的序列为Q,操作序列为x,Y从up取了k个珠子,从down取了l个珠子,取出来的珠子组成的序列也为Q,操作序列为y,那么我们就得到了一个有序对(x,y),f[i][j][k][l]即表示有序对(x,y)的数量。两个有序对不相同当且仅当x和y不同时相同。
下面证明f[i][j][k][l]即为所求。
已知:取出珠子的序列为Q,x和y分别为一种取珠方法(可相同), 取出Q的方案数为a;
求证:有序对(x,y)的数量等于a2。
因为取出Q的方案数为a,所以x & y都有a种取值,且x & y彼此独立,故对于x的每一个取值,y都有a种取值,故有序对(x,y)的数量为a2,命题得证。
博主是个超级大傻*,连空间优化到n2都不会,请各路大神指教。
#include <map>
#include <set>
#include <cmath>
#include <queue>
#include <stack>
#include <cstdio>
#include <string>
#include <vector>
#include <cstring>
#include <complex>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#define rg register
#define ll long long
using namespace std; inline int gi()
{
rg int r = ; rg bool b = ; rg char c = getchar();
while (c < '' || c > '') { if (c == '-') b = ; c = getchar(); }
while (c >= '' && c <= '') { r = r * + c - '', c = getchar(); }
if (b) return r; return -r;
} const int inf = , N = , MOD = ;
int n,m,f[N][N][N];
char S[N],X[N]; inline void input()
{
freopen ("!.in", "r", stdin);
n=gi(), m=gi();
scanf("%s%s",S+,X+);
} inline void output()
{
freopen ("!.out", "w", stdout);
printf("%d\n",f[n][m][n]);
} inline void cal(int &t,int d) { t+=d; if (t >= MOD) t-=MOD; } inline void solve()
{
int i,j,k,l,tmp;
f[][][]=;
for (i=; i<=n; i++)
for (j=; j<=m; j++)
for (k=; k<=n; k++)
{
tmp=f[i][j][k], l=i+j-k;
if (!tmp || !l || l > m) continue;
if (S[i+] == S[k+])
cal(f[i+][j][k+],tmp);
if (X[j+] == S[k+])
cal(f[i][j+][k+],tmp);
if (S[i+] == X[l+])
cal(f[i+][j][k],tmp);
if (X[j+] == X[l+])
cal(f[i][j+][k],tmp);
}
} int main()
{
input();
solve();
output();
return ;
}
Update
博主终于会把空间优化到n^2辣!!!
PS:记得要清零!!!
#include <bits/stdc++.h>
#define rg register
#define ll long long
using namespace std; inline int gi()
{
rg int r = ; rg bool b = ; rg char c = getchar();
while (c < '' || c > '') { if (c == '-') b = ; c = getchar(); }
while (c >= '' && c <= '') { r = r * + c - '', c = getchar(); }
if (b) return r; return -r;
} const int inf = , N = , MOD = ;
int n,m,f[][N][N];
char S[N],X[N]; inline void input()
{
n=gi(), m=gi();
scanf("%s%s",S,X);
} inline void cal(rg int &t,rg int d)
{
t+=d;
if (t >= MOD)
t-=MOD;
} inline void solve()
{
rg int i,j,k,p,q,l,r,now,lst;
f[][][]=, now=;
for (k=; k<n+m; ++k) //枚举一共选了多少个,因为每次更新都会多选一个,所以只需枚举到 n+m-1
{
l=max(k-m,), r=min(k,n); //计算 S 管道取珠的数量范围
lst=now, now^=;
for (i=l; i<=r; ++i) //分别枚举序列 x,y
for (j=l; j<=r; ++j)
{
p=k-i, q=k-j; //i,j 表示 S 管道取的数量,p,q表示 X 管道的数量
if (!f[lst][i][j])
continue;
if (S[i] == S[j])
cal(f[now][i+][j+],f[lst][i][j]);
if (S[i] == X[q])
cal(f[now][i+][j],f[lst][i][j]);
if (X[p] == S[j])
cal(f[now][i][j+],f[lst][i][j]);
if (X[p] == X[q])
cal(f[now][i][j],f[lst][i][j]);
f[lst][i][j]=; //每次更新后要记得清零
}
}
printf("%d\n",f[now][n][n]);
} int main()
{
input();
solve();
return ;
}
BZOJ1566 【NOI2009】管道取珠的更多相关文章
- BZOJ1566 [NOI2009]管道取珠 【dp】
题目 输入格式 第一行包含两个整数n, m,分别表示上下两个管道中球的数目. 第二行为一个AB字符串,长度为n,表示上管道中从左到右球的类型.其中A表示浅色球,B表示深色球. 第三行为一个AB字符串, ...
- bzoj1566: [NOI2009]管道取珠 DP
题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=1566 思路 n个球,第i个球颜色为ai,对于颜色j,对答案的贡献为颜色为j的球的个数的平 ...
- bzoj1566 [NOI2009]管道取珠——DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1566 一眼看上去很懵... 但是答案可以转化成有两个人在同时取珠子,他们取出来一样的方案数: ...
- [bzoj1566][NOI2009]管道取珠
来自FallDream的博客,未经允许,请勿转载,谢谢. n<=500 神题...... 发现这个平方可以看作两个序列相同的对数 然后就可以表示状态了. f[i][j][k]表示两个序列各选了 ...
- 【BZOJ 1566】 1566: [NOI2009]管道取珠 (DP)
1566: [NOI2009]管道取珠 Time Limit: 20 Sec Memory Limit: 650 MBSubmit: 1659 Solved: 971 Description In ...
- Bzoj 1566: [NOI2009]管道取珠(DP)
1566: [NOI2009]管道取珠 Time Limit: 20 Sec Memory Limit: 650 MB Submit: 1558 Solved: 890 [Submit][Status ...
- NOI2009 管道取珠 神仙DP
原题链接 原题让求的是\(\sum\limits a_i^2\),这个东西直接求非常难求.我们考虑转化一下问题. 首先把\(a_i^2\)拆成\((1+1+...+1)(1+1+...+1)\),两个 ...
- BZOJ.1566.[NOI2009]管道取珠(DP 思路)
BZOJ 洛谷 考虑\(a_i^2\)有什么意义:两个人分别操作原序列,使得得到的输出序列都为\(i\)的方案数.\(\sum a_i^2\)就是两人得到的输出序列相同的方案数. \(f[i][j][ ...
- 【题解】NOI2009管道取珠
又是艰难想题的一晚,又是做不出来的一题 (:д:) 好想哭啊…… 这题最关键的一点还是提供一种全新的想法.看到平方和这种东西,真的不好dp.然而我一直陷在化式子的泥潭中出不来.平方能够联想到什么?原本 ...
- BZOJ1566:[NOI2009]管道取珠——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=1566 https://www.luogu.org/problemnew/show/P1758 题目 ...
随机推荐
- nginx 自签名https
繁杂的命令,以下准备写好的sh,拷贝https.sh文件,设置执行权限:chmod u+x https.sh #!/bin/sh # create self-signed server certifi ...
- [转] 常用SQL查询语句
sunada 的原文地址 常用SQL查询语句 一.简单查询语句 1. 查看表结构 SQL>DESC emp; 2. 查询所有列 SQL>SELECT * FROM emp; 3. 查询指 ...
- [反汇编练习] 160个CrackMe之036
[反汇编练习] 160个CrackMe之036. 本系列文章的目的是从一个没有任何经验的新手的角度(其实就是我自己),一步步尝试将160个CrackMe全部破解,如果可以,通过任何方式写出一个类似于注 ...
- Spin.js-CSS动画进度载入器
spin.js是一款很easy的CSS载入器,他是一款使用了VML(Vector Makeup Language)的CSS动画效果. spin.js的特性 他有着很强大的适应性.有着下面几个特性: 1 ...
- python_获得列表中重复的项的索引
a = ['b','a', 'b', 'c', 'a', 'c','d'] b=[] f=[] for i in a: c=[] for item in enumerate(a): if item[1 ...
- 初涉IPC,了解AIDL的工作原理及用法
初涉IPC,了解AIDL的工作原理及用法 今天来讲讲AIDL.这个神奇的AIDL,也是近期在学习的,看了某课大神的解说写下的blog,希望结合自己的看法给各位同价通俗易懂的解说 官方文档:http:/ ...
- 最新ssh2构架
构架要求: 1.最新ssh2jar包. 2.使用全注解. 3.给锁机制 4.缓存. 5.使用权限构架. 6. 前台构架用bootstraps. 今天任务: 搭建php环境.看代码.整理ssh2架构. ...
- 零基础学python-3.1 python基本规则和语句
1."#"凝视的開始 #凝视的东西 print("welcome") 2."\n"换行符 watermark/2/text/aHR0cDov ...
- 运维基础-IO 管道
什么是文件描述符FD或者文件句柄? 通过构建一个带有编号标记的通道(文件描述符)的进程结构来管理打开的文件.今晨连接到文件,从而达到这些文件所代表的的数据内容或者设备.通过使用通道0.1.2(称为标准 ...
- 基于tornado实现的web聊天室
目录结构: # -*- coding:utf-8 -*- import uuid import json import tornado.ioloop import tornado.web import ...