LightOJ 1132 Summing up Powers:矩阵快速幂 + 二项式定理
题目链接:http://lightoj.com/volume_showproblem.php?problem=1132
题意:
给定n、k,求(1K + 2K + 3K + ... + NK) % 232。
题解:
设sum(i) = 1K + 2K + 3K + ... + iK
所以要从sum(1)一直推到sum(n)。
所以要找出sum(i)和sum(i+1)之间的关系:

好了可以造矩阵了。
(n = 6时)
矩阵表示(大小为 1 * (k+2)):

初始矩阵start:

也就是:

特殊矩阵special:

AC Code:
#include <iostream>
#include <stdio.h>
#include <string.h>
#define MAX_L 60
#define MAX_K 55 using namespace std; struct Mat
{
int n;
int m;
unsigned val[MAX_L][MAX_L];
Mat()
{
n=;
m=;
memset(val,,sizeof(val));
}
void print_mat()
{
cout<<"--------"<<endl;
for(int i=;i<n;i++)
{
for(int j=;j<m;j++)
{
cout<<val[i][j]<<" ";
}
cout<<endl;
}
cout<<"--------"<<endl;
}
}; int k,t;
long long n;
unsigned c[MAX_K][MAX_K]; void cal_combination()
{
memset(c,,sizeof(c));
c[][]=;
for(int i=;i<MAX_K;i++)
{
c[i][]=;
for(int j=;j<=i;j++)
{
c[i][j]=c[i-][j]+c[i-][j-];
}
}
} Mat make_unit(int n)
{
Mat mat;
mat.n=n;
mat.m=n;
for(int i=;i<n;i++)
{
mat.val[i][i]=;
}
return mat;
} Mat make_start(int k)
{
Mat mat;
mat.n=;
mat.m=k+;
for(int i=;i<k+;i++)
{
mat.val[][i]=;
}
return mat;
} Mat make_special(int k)
{
Mat mat;
mat.n=k+;
mat.m=k+;
for(int j=;j<k+;j++)
{
for(int i=j;i<k+;i++)
{
mat.val[i][j]=c[k-j+][i-j];
}
}
for(int i=;i<k+;i++)
{
mat.val[i][]=mat.val[i][];
}
mat.val[][]=;
return mat;
} Mat mul_mat(const Mat &a,const Mat &b)
{
Mat c;
if(a.m!=b.n)
{
cout<<"Error: mul_mat"<<endl;
return c;
}
c.n=a.n;
c.m=b.m;
for(int i=;i<a.n;i++)
{
for(int j=;j<b.m;j++)
{
for(int k=;k<a.m;k++)
{
c.val[i][j]+=a.val[i][k]*b.val[k][j];
}
}
}
return c;
} Mat quick_pow_mat(Mat mat,long long k)
{
Mat ans;
if(mat.n!=mat.m)
{
cout<<"Error: quick_pow_mat"<<endl;
return ans;
}
ans=make_unit(mat.n);
while(k)
{
if(k&)
{
ans=mul_mat(ans,mat);
}
mat=mul_mat(mat,mat);
k>>=;
}
return ans;
} int main()
{
// freopen("in.txt","r",stdin);
// freopen("out.txt","w",stdout);
cal_combination();
cin>>t;
for(int cas=;cas<=t;cas++)
{
cin>>n>>k;
Mat start=make_start(k);
Mat special=make_special(k);
Mat ans=mul_mat(start,quick_pow_mat(special,n-));
cout<<"Case "<<cas<<": "<<ans.val[][]<<endl;
}
}
LightOJ 1132 Summing up Powers:矩阵快速幂 + 二项式定理的更多相关文章
- LightOJ - 1132 Summing up Powers 矩阵高速幂
题目大意:求(1^K + 2^K + 3K + - + N^K) % 2^32 解题思路: 借用别人的图 能够先打表,求出Cnm,用杨辉三角能够高速得到 #include<cstdio> ...
- LightOj 1065 - Number Sequence (矩阵快速幂,简单)
题目 和 LightOj 1096 - nth Term 差不多的题目和解法,这道相对更简单些,万幸,这道比赛时没把模版给抽风坏. #include<stdio.h> #include&l ...
- LightOJ 1070 Algebraic Problem:矩阵快速幂 + 数学推导
题目链接:http://lightoj.com/volume_showproblem.php?problem=1070 题意: 给你a+b和ab的值,给定一个n,让你求a^n + b^n的值(MOD ...
- LightOj 1096 - nth Term (矩阵快速幂,简单)
题目 这道题是很简单的矩阵快速幂,可惜,在队内比赛时我不知什么时候抽风把模版中二分时判断的 ==1改成了==0 ,明明觉得自己想得没错,却一直过不了案例,唉,苦逼的比赛状态真让人抓狂!!! #incl ...
- LightOJ 1268 Unlucky Strings (KMP+矩阵快速幂)
题意:给出一个字符集和一个字符串和正整数n,问由给定字符集组成的所有长度为n的串中不以给定字符串为连续子串的有多少个? 析:n 实在是太大了,如果小的话,就可以用动态规划做了,所以只能用矩阵快速幂来做 ...
- lightOJ 1132 Summing up Powers(矩阵 二分)
题目链接:http://lightoj.com/volume_showproblem.php?problem=1132 题意:给出n和m.求sum(i^m)%2^32.(1<=i<=n) ...
- LightOJ 1070 - Algebraic Problem 推导+矩阵快速幂
http://www.lightoj.com/volume_showproblem.php?problem=1070 思路:\({(a+b)}^n =(a+b){(a+b)}^{n-1} \) \(( ...
- LightOJ 1244 - Tiles 猜递推+矩阵快速幂
http://www.lightoj.com/volume_showproblem.php?problem=1244 题意:给出六种积木,不能旋转,翻转,问填充2XN的格子有几种方法.\(N < ...
- lightoj 1096【矩阵快速幂(作为以后的模板)】
基础矩阵快速幂何必看题解 #include <bits/stdc++.h> using namespace std; /* 0 1 2 3 4 5 6 7 0 0 0 */ const i ...
随机推荐
- mysql rpm安装,以及修改charset
http://my.oschina.net/u/1156660/blog/343154?fromerr=tmDGGiDL 修改charset: http://stackoverflow.com/que ...
- 日历插件js,jquery
常用的日历插件 DatePicker My97DatePicker 文章来源:刘俊涛的博客 地址:http://www.cnblogs.com/lovebing 欢迎关注,有问题一起学习欢迎留言. ...
- Android自动滚动 轮播循环的ViewPager
主要介绍如何实现ViewPager自动播放,循环滚动的效果及使用.顺便解决ViewPager嵌套(ViewPager inside ViewPager)影响触摸滑动及ViewPager滑动速度设置问题 ...
- 分布式搜索elasticsearch 环境搭建
1.elasticsearch安装 elasticsearch的安装超级easy,解压即用(要事先安装好java环境). 到官网 http://www.elasticsearch.org下载最新版的 ...
- IOS-4-面试题1:黑马程序猿IOS面试题大全
一.多线程网络 1. 多线程的底层实现? 1> 首先搞清楚什么是线程.什么是多线程 2> Mach是第一个以多线程方式处理任务的系统.因此多线程的底层实现机制是基于Mach的线程 3> ...
- js中比較好的继承方式
前面说到了原型和原型链,今天就来说说在面向对象中比較好的继承方式吧.先来看看两种基础的继承方式: 一.构造函数型 function People(name) { this.name=name; } P ...
- 请实现一个函数用来匹配包括'.'和'*'的正则表达式。模式中的字符'.'表示任意一个字符,而'*'表示它前面的字符可以出现任意次(包含0次)。 在本题中,匹配是指字符串的所有字符匹配整个模式。例如,字符串"aaa"与模式"a.a"和"ab*ac*a"匹配,但是与"aa.a"和"ab*a"均不匹配
// test20.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include<iostream> #include< ...
- 时间控件(DateTime Picker)
中文:http://www.bootcss.com/p/bootstrap-datetimepicker/index.htm http://www.malot.fr/bootstrap-datetim ...
- Git分支中的远程操作实践
Git分支中的远程操作实践 前几篇博客陆陆续续的讲了好多关于Git操作的内容, 其中在上篇博客聊了<Git中的merge.rebase.cherry-pick以及交互式rebase>,本篇 ...
- Azure、数据、AI开发工具
Azure.数据.AI开发工具 在今天召开的 Connect(); 2017 开发者大会上,微软宣布了 Azure.数据.AI 开发工具的内容.这是第一天的 Connect(); 2017 的主题演讲 ...