有关树的理论部分描述:《数据结构与算法》-4-树与二叉树

  下面代码均基于python实现,包含:

  • 二叉树的前序、中序、后序遍历的递归算法和非递归算法
  • 层次遍历
  • 由前序序列、中序序列重构二叉树
  • 由后序序列、中序序列重构二叉树
# -*- coding: utf-8 -*-
# @Time: 2019-04-15 18:35
# @Author: chen class NodeTree:
def __init__(self, root=None, lchild=None, rchild=None):
"""创建二叉树
Argument:
lchild: BinTree
左子树
rchild: BinTree
右子树 Return:
Tree
"""
self.root = root
self.lchild = lchild
self.rchild = rchild class BinTree: # -----------前序遍历 ------------
# 递归算法
def pre_order_recursive(self, T):
if T == None:
return
print(T.root, end=' ')
self.pre_order_recursive(T.lchild)
self.pre_order_recursive(T.rchild) # 非递归算法
def pre_order_non_recursive(self, T):
"""借助栈实现前驱遍历
"""
if T == None:
return
stack = []
while T or len(stack) > 0:
if T:
stack.append(T)
print(T.root, end=' ')
T = T.lchild
else:
T = stack[-1]
stack.pop()
T = T.rchild # -----------中序遍历 ------------
# 递归算法
def mid_order_recursive(self, T):
if T == None:
return
self.mid_order_recursive(T.lchild)
print(T.root, end=' ')
self.mid_order_recursive(T.rchild) # 非递归算法
def mid_order_non_recursive(self, T):
"""借助栈实现中序遍历
"""
if T == None:
return
stack = []
while T or len(stack) > 0:
if T:
stack.append(T)
T = T.lchild
else:
T = stack.pop()
print(T.root, end=' ')
T = T.rchild # -----------后序遍历 ------------
# 递归算法
def post_order_recursive(self, T):
if T == None:
return
self.post_order_recursive(T.lchild)
self.post_order_recursive(T.rchild)
print(T.root, end=' ') # 非递归算法
def post_order_non_recursive(self, T):
"""借助两个栈实现后序遍历
"""
if T == None:
return
stack1 = []
stack2 = []
stack1.append(T)
while stack1:
node = stack1.pop()
if node.lchild:
stack1.append(node.lchild)
if node.rchild:
stack1.append(node.rchild)
stack2.append(node)
while stack2:
print(stack2.pop().root, end=' ')
return # -----------层次遍历 ------------
def level_order(self, T):
"""借助队列(其实还是一个栈)实现层次遍历
"""
if T == None:
return
stack = []
stack.append(T)
while stack:
node = stack.pop(0) # 实现先进先出
print(node.root, end=' ')
if node.lchild:
stack.append(node.lchild)
if node.rchild:
stack.append(node.rchild) # ----------- 前序遍历序列、中序遍历序列 —> 重构二叉树 ------------
def tree_by_pre_mid(self, pre, mid):
if len(pre) != len(mid) or len(pre) == 0 or len(mid) == 0:
return
T = NodeTree(pre[0])
index = mid.index(pre[0])
T.lchild = self.tree_by_pre_mid(pre[1:index+1], mid[:index])
T.rchild = self.tree_by_pre_mid(pre[index+1:], mid[index+1:])
return T # ----------- 后序遍历序列、中序遍历序列 —> 重构二叉树 ------------
def tree_by_post_mid(self, post, mid):
if len(post) != len(mid) or len(post) == 0 or len(mid) == 0:
return
T = NodeTree(post[-1])
index = mid.index(post[-1])
T.lchild = self.tree_by_post_mid(post[:index], mid[:index])
T.rchild = self.tree_by_post_mid(post[index:-1], mid[index+1:])
return T if __name__ == '__main__': # ----------- 测试:前序、中序、后序、层次遍历 -----------
# 创建二叉树
nodeTree = NodeTree(1,
lchild=NodeTree(2,
lchild=NodeTree(4,
rchild=NodeTree(7))),
rchild=NodeTree(3,
lchild=NodeTree(5),
rchild=NodeTree(6)))
T = BinTree()
T.pre_order_recursive(nodeTree) # 前序遍历-递归
print('\n')
T.pre_order_non_recursive(nodeTree) # 前序遍历-非递归
print('\n')
T.mid_order_recursive(nodeTree) # 中序遍历-递归
print('\n')
T.mid_order_non_recursive(nodeTree) # 前序遍历-非递归
print('\n')
T.post_order_recursive(nodeTree) # 后序遍历-递归
print('\n')
T.post_order_non_recursive(nodeTree) # 前序遍历-非递归
print('\n')
T.level_order(nodeTree) # 层次遍历
print('\n') print('==========================================================================') # ----------- 测试:由遍历序列构造二叉树 -----------
T = BinTree()
pre = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I']
mid = ['B', 'C', 'A', 'E', 'D', 'G', 'H', 'F', 'I']
post = ['C', 'B', 'E', 'H', 'G', 'I', 'F', 'D', 'A'] newT_pre_mid = T.tree_by_pre_mid(pre, mid) # 由前序序列、中序序列构造二叉树
T.post_order_recursive(newT_pre_mid) # 获取后序序列
print('\n') newT_post_mid = T.tree_by_post_mid(post, mid) # 由后序序列、中序序列构造二叉树
T.pre_order_recursive(newT_post_mid) # 获取前序序列

  测试用的两个二叉树:

Python实现二叉树的前序、中序、后序、层次遍历的更多相关文章

  1. 分别求二叉树前、中、后序的第k个节点

    一.求二叉树的前序遍历中的第k个节点 //求先序遍历中的第k个节点的值 ; elemType preNode(BTNode *root,int k){ if(root==NULL) return ' ...

  2. 算法进阶面试题03——构造数组的MaxTree、最大子矩阵的大小、2017京东环形烽火台问题、介绍Morris遍历并实现前序/中序/后序

    接着第二课的内容和带点第三课的内容. (回顾)准备一个栈,从大到小排列,具体参考上一课.... 构造数组的MaxTree [题目] 定义二叉树如下: public class Node{ public ...

  3. 二叉树 遍历 先序 中序 后序 深度 广度 MD

    Markdown版本笔记 我的GitHub首页 我的博客 我的微信 我的邮箱 MyAndroidBlogs baiqiantao baiqiantao bqt20094 baiqiantao@sina ...

  4. 前序+中序->后序 中序+后序->前序

    前序+中序->后序 #include <bits/stdc++.h> using namespace std; struct node { char elem; node* l; n ...

  5. SDUT OJ 数据结构实验之二叉树八:(中序后序)求二叉树的深度

    数据结构实验之二叉树八:(中序后序)求二叉树的深度 Time Limit: 1000 ms Memory Limit: 65536 KiB Submit Statistic Discuss Probl ...

  6. SDUT-2804_数据结构实验之二叉树八:(中序后序)求二叉树的深度

    数据结构实验之二叉树八:(中序后序)求二叉树的深度 Time Limit: 1000 ms Memory Limit: 65536 KiB Problem Description 已知一颗二叉树的中序 ...

  7. 给出 中序&后序 序列 建树;给出 先序&中序 序列 建树

    已知 中序&后序  建立二叉树: SDUT 1489 Description  已知一棵二叉树的中序遍历和后序遍历,求二叉树的先序遍历 Input  输入数据有多组,第一行是一个整数t (t& ...

  8. 【C&数据结构】---关于链表结构的前序插入和后序插入

    刷LeetCode题目,需要用到链表的知识,忽然发现自己对于链表的插入已经忘得差不多了,以前总觉得理解了记住了,但是发现真的好记性不如烂笔头,每一次得学习没有总结输出,基本等于没有学习.连复盘得机会都 ...

  9. 【数据结构】二叉树的遍历(前、中、后序及层次遍历)及leetcode107题python实现

    文章目录 二叉树及遍历 二叉树概念 二叉树的遍历及python实现 二叉树的遍历 python实现 leetcode107题python实现 题目描述 python实现 二叉树及遍历 二叉树概念 二叉 ...

随机推荐

  1. SAP FI 科目代码

    资产类 现金 银行存款 其他货币资金 短期投资 短期投资跌价准备 应收票据 应收股利 应收利息 应收账款 其他应收款 坏账准备 预付账款 应收补贴款 物料采购 原材料 包装物 低值易耗品 材料成本差异 ...

  2. [2018-10-10]记录一下Vue的一个问题

    最近用vue typescript SPA 做管理后台(ABP官网导出的vue项目模板),遇到一个错误,找了好久,虽然有相关资料,但发现都没解决,这里自己记录一下. Failed to mount c ...

  3. Android Weekly Notes Issue #321

    Android Weekly Issue #321 August 5th, 2018. Android Weekly Issue #321 本期内容包括: 开源项目Plaid的改版; 使用Tensor ...

  4. ManualResetEvent使用

    1.定义 MSDN定义: 通知一个或多个正在等待的线程已发生事件.此类不能被继承. 详细说明: ManualResetEvent 允许线程通过发信号互相通信.通常,此通信涉及一个线程在其他线程进行之前 ...

  5. ActiveMQ之点对点使用

    package com.toov5.producer; import javax.jms.Connection; import javax.jms.JMSException; import javax ...

  6. BZOJ 1651 [Usaco2006 Feb]Stall Reservations 专用牛棚:优先队列【线段最大重叠层数】

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1651 题意: 给你n个线段[a,b],问你这些线段重叠最多的地方有几层. 题解: 先将线段 ...

  7. 最近火狐浏览器 总是“插件 adobe flash 已崩溃”

    原因和解决方案:在地址栏中输入:about:addons>在如下地方发现firefox已经在警告该插件的安全性了>选择“总不激活”

  8. Centos7配置https,及多个https配置

    Centos7.2配置https,及多个https配置 1.单个https配置 检查相关依赖,如果没有就yum安装 yum install mod_ssl openssl rpm -qa| grep ...

  9. 集训Day10

    果然颓的不像话 bzoj3680 gty又虐了一场比赛,被虐的蒟蒻们决定吊打gty.gty见大势不好机智的分出了n个分身,但还是被人多势众的蒟蒻抓住了.蒟蒻们将n个gty吊在n根绳子上,每根绳子穿过天 ...

  10. 【Lintcode】105.Copy List with Random Pointer

    题目: A linked list is given such that each node contains an additional random pointer which could poi ...