P3372 【模板】线段树 1

题目描述

如题,已知一个数列,你需要进行下面两种操作:

1.将某区间每一个数加上x

2.求出某区间每一个数的和

输入输出格式

输入格式:

第一行包含两个整数N、M,分别表示该数列数字的个数和操作的总个数。

第二行包含N个用空格分隔的整数,其中第i个数字表示数列第i项的初始值。

接下来M行每行包含3或4个整数,表示一个操作,具体如下:

操作1: 格式:1 x y k 含义:将区间[x,y]内每个数加上k

操作2: 格式:2 x y 含义:输出区间[x,y]内每个数的和

输出格式:

输出包含若干行整数,即为所有操作2的结果。

输入输出样例

输入样例#1:

5 5
1 5 4 2 3
2 2 4
1 2 3 2
2 3 4
1 1 5 1
2 1 4
输出样例#1:

11
8
20

说明

时空限制:1000ms,128M

数据规模:

对于30%的数据:N<=8,M<=10

对于70%的数据:N<=1000,M<=10000

对于100%的数据:N<=100000,M<=100000

(数据已经过加强^_^,保证在int64/long long数据范围内)

样例说明:

/*感觉好久没写线段树了,这是一个只牵扯到区间修改和区间查询的线段树模板,需要用懒标记,别忘开longlong*/
#include<iostream>
#include<cstdio>
using namespace std;
#define ll long long
ll n,m,opx,opy,opv,ans;
struct node{
ll lazy,v,l,r;
}tr[*];
void build(int l,int r,int k){
tr[k].l=l;tr[k].r=r;
if(tr[k].l==tr[k].r){
scanf("%lld",&tr[k].v);
return;
}
int mid=(l+r)/;
build(l,mid,k*);
build(mid+,r,k*+);
tr[k].v=tr[k*].v+tr[k*+].v;
}
void down(int k){
ll v=tr[k].lazy;
tr[k*].v+=v*(tr[k*].r-tr[k*].l+);
tr[k*].lazy+=v;
tr[k*+].v+=v*(tr[k*+].r-tr[k*+].l+);
tr[k*+].lazy+=v;
tr[k].lazy=;
}
void add(int k){
if(tr[k].l>=opx&&tr[k].r<=opy){
tr[k].v+=opv*(tr[k].r-tr[k].l+);
tr[k].lazy+=opv;
return;
}
if(tr[k].lazy)down(k);
ll m=(tr[k].l+tr[k].r)/;
if(opx<=m)add(k*);
if(opy>m)add(k*+);
tr[k].v=tr[k*].v+tr[k*+].v;
}
void ask(int k){
if(tr[k].l>=opx&&tr[k].r<=opy){
ans+=tr[k].v;
return;
}
if(tr[k].lazy)down(k);
int m=(tr[k].l+tr[k].r)/;
if(opx<=m)ask(k*);
if(opy>m)ask(k*+);
}
int main(){
scanf("%lld%lld",&n,&m);
build(,n,);int x;
for(ll i=;i<=m;i++){
scanf("%d",&x);
if(x==){
scanf("%d%d%lld",&opx,&opy,&opv);
add();
}
if(x==){
ans=;
scanf("%d%d",&opx,&opy);
ask();
printf("%lld\n",ans);
}
}
}

洛谷 P3372 【模板】线段树 1的更多相关文章

  1. 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)

    To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...

  2. 洛谷 - P1198 - 最大数 - 线段树

    https://www.luogu.org/problemnew/show/P1198 要问区间最大值,肯定是要用线段树的,不能用树状数组.(因为没有逆元?但是题目求的是最后一段,可以改成类似前缀和啊 ...

  3. 洛谷 P2391 白雪皑皑 线段树+优化

    题目描述: 现在有 \(N\) 片雪花排成一列. Pty 要对雪花进行$ M $次染色操作,第 \(i\)次染色操作中,把\((i*p+q)%N+1\) 片雪花和第\((i*q+p)%N+1\)片雪花 ...

  4. 【洛谷】【线段树】P1471 方差

    [题目背景:] 滚粗了的HansBug在收拾旧数学书,然而他发现了什么奇妙的东西. [题目描述:] 蒟蒻HansBug在一本数学书里面发现了一个神奇的数列,包含N个实数.他想算算这个数列的平均数和方差 ...

  5. 【洛谷】【线段树】P1047 校门外的树

    [题目描述:] 某校大门外长度为L的马路上有一排树,每两棵相邻的树之间的间隔都是1米.我们可以把马路看成一个数轴,马路的一端在数轴0的位置,另一端在L的位置:数轴上的每个整数点,即0,1,2,……,L ...

  6. 【洛谷】【线段树】P1886 滑动窗口

    [题目描述:] 现在有一堆数字共N个数字(N<=10^6),以及一个大小为k的窗口.现在这个从左边开始向右滑动,每次滑动一个单位,求出每次滑动后窗口中的最大值和最小值. [输入格式:] 输入一共 ...

  7. 【洛谷】【线段树】P3353 在你窗外闪耀的星星

    [题目描述:] /* 飞逝的的时光不会模糊我对你的记忆.难以相信从我第一次见到你以来已经过去了3年.我仍然还生动地记得,3年前,在美丽的集美中学,从我看到你微笑着走出教室,你将头向后仰,柔和的晚霞照耀 ...

  8. 洛谷P5280 [ZJOI2019]线段树

      https://www.luogu.org/problemnew/show/P5280 省选的时候后一半时间开这题,想了接近两个小时的各种假做法,之后想的做法已经接近正解了,但是有一些细节问题理不 ...

  9. 洛谷P3374(线段树)(询问区间和,支持单点修改)

    洛谷P3374 //询问区间和,支持单点修改 #include <cstdio> using namespace std; ; struct treetype { int l,r,sum; ...

  10. 洛谷 P5280 - [ZJOI2019]线段树(线段树+dp,神仙题)

    题面传送门 神仙 ZJOI,不会做啊不会做/kk Sooke:"这八成是考场上最可做的题",由此可见 ZJOI 之毒瘤. 首先有一个非常显然的转化,就是题目中的"将线段树 ...

随机推荐

  1. Java多线程系列 基础篇02 线程的创建和运行

    1.线程创建的方式常用有两种 1. 继承 Thread 类创建线程 2. 实现 Runnable 接口创建线程 2.Thread 和 Runnable的区别 Thread和Runnable的相同点:都 ...

  2. AnkhSVN

    安装和配置 签入签出问题 1.安装和配置 ①安装.(貌似默认的安装到C:\Program Files\AnkhSVN 2下,开始菜单也没快捷?) ②源代码管理器设置:打开vs2012,工具→选项→源代 ...

  3. CSS3定时提示动画特效

    在线演示 本地下载

  4. 蓝色科技AE宣传片头光晕视频

    蓝色科技AE宣传片头光晕视频素材,蓝色AE炫光素材,科技AE片头,精美,AE特效,绚丽,AE模板,视频素材,动画. 地址:http://www.huiyi8.com/xuanguang/ae/

  5. sphinx 全文搜索引擎

    sphinx的安装与配置 --------------------------------------------------------------------------------------- ...

  6. linux命令学习笔记(54):ping命令

    Linux系统的ping命令是常用的网络命令,它通常用来测试与目标主机的连通性,我们经常会说“ping一下某机器, 看是不是开着”.不能打开网页时会说“你先ping网关地址192.168.1.1试试” ...

  7. linux 进程学习笔记-消息队列messagequeue

    可以想象,如果两个进程都可以访问同一个队列:其中一个进程(sender)向其中写入结构化数据,另外一个进程(receiver)再从其中把结构化的数据读取出来.那么这两个进程就是在利用这个队列进行通信了 ...

  8. TCP/IP--VLSM

    ##########################VLSM################### 实际案例: 192.168.1.0/28 有几个网络号:2的4次方:16个网络号 : 有几个主机号: ...

  9. AtCoder Beginner Contest 100 2018/06/16

    A - Happy Birthday! Time limit : 2sec / Memory limit : 1000MB Score: 100 points Problem Statement E8 ...

  10. BZOJ1855 [Scoi2010]股票交易[单调队列dp]

    题 题面有点复杂,不概括了. 后面的状态有前面的最优解获得大致方向是dp.先是瞎想了个$f[i][j]$表示第$i$天手里有$j$张股票时最大收入(当天无所谓买不买). 然后写了一个$O(n^4)$状 ...