Codevs 4357 不等数列
不等数列
【题目描述】
将1到n任意排列,然后在排列的每两个数之间根据他们的大小关系插入“>”和“<”。问在所有排列中,有多少个排列恰好有k个“<”。答案对2012取模。
【输入格式】
第一行2个整数n,k。
【输出格式】
一个整数表示答案。
【样例输入】
5 2
【样例输出】
66
【数据范围】
对于30%的数据:n <= 10
对于100%的数据:k < n <= 1000,
对于30% n<=10的数据,搜索打表,状态压缩动态规划......
对于1--n等类似的排列计数问题,以动态规划和组合数学2种大方向为基本解决方向。
组合数学在noip最难也就到杨辉三角左右,所以这题我从动态规划展开。
如果此类排列问题在脑中的模型是:“有n个格子,填入1--n”,那么相对应的DP就不得不记录哪些数填过了(从左到右填入)或者哪些格子填过了(从小到大填入)。这样一来就必须要使用状态压缩来存储这些信息,就使得复杂度变得难以接受。
而如果换个模型:“从小到大把数字插入数列”。注意是数列而不是格子,这样一来就不需要记录是哪些数字插入了(而只要记录插入到了第几个数字),同时不需要记录每个数字的具体位置,也不需要记录数字的相对位置,而只需记录相对关系的数目(对本题而言就是有几个“<”)。
因为是从小到大插入数字,所以当前插入的数字一定大于所有已经插入的。
蓝色是当前插入的数字,如果它插入到<关系的2个数字之间(或者数列最左端),就会使数列的<数量不变,>数量+1:
类似的,插入到>关系的2个数字之间(或者数列最右端),数列的<数量+1,>数量不变。
F[i][j]表示前i个数字构成的数列中,恰有j个‘<’号的方案数(‘>’号就有i-j-1个)。
F[i][j]=F[i-1][j-1]*(i-j)+F[i-1][j]*(j+1).
时空复杂度:O(n^2)
若打表则时间复杂度为O(1)
#include<iostream>
#include<cstdio>
using namespace std;
int n,k,f[][];
int main(){
scanf("%d%d",&n,&k);
for(int i=;i<=n;i++)f[i][]=;
for(int i=;i<=n;i++)
for(int j=;j<i;j++)
f[i][j]=max(f[i][j],f[i-][j-]*(i-j)%+f[i-][j]*(j+)%)%;
cout<<f[n][k];
}
Codevs 4357 不等数列的更多相关文章
- 矩阵乘法快速幂 codevs 1250 Fibonacci数列
codevs 1250 Fibonacci数列 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description 定义:f0=f1=1 ...
- 模拟赛 Problem 2 不等数列(num.cpp/c/pas)
Problem 2 不等数列(num.cpp/c/pas) [题目描述] 将1到n任意排列,然后在排列的每两个数之间根据他们的大小关系插入“>”和“<”.问在所有排列中,有多少个排列恰好有 ...
- 矩阵乘法快速幂 codevs 1732 Fibonacci数列 2
1732 Fibonacci数列 2 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题解 查看运行结果 题目描述 Description 在“ ...
- [模拟赛] T2 不等数列
Description 将1到n任意排列,然后在排列的每两个数之间根据他们的大小关系插入">"和"<".问在所有排列中,有多少个排列恰好有k个&qu ...
- 【P2401】不等数列(DP)
这个题乍一看就应该是DP,再看一眼数据范围,1000..那就应该是了.然后就向DP的方向想,经过对小数据的计算可以得出,如果我们用f[i][j]来表示前i个数有j个是填了"<" ...
- Codevs 1976 Queen数列
1976 Queen数列 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题解 题目描述 Description 将1到N的整数数列(1,2,3,… ...
- luogu P2401 不等数列 |动态规划
题目描述 将1到n任意排列,然后在排列的每两个数之间根据他们的大小关系插入">"和"<".问在所有排列中,有多少个排列恰好有k个"< ...
- 洛谷 P2401 不等数列 题解
每日一题 day25 打卡 Analysis dp[i][j]=dp[i-1][j-1]*(i-j)+dp[i-1][j]*(j+1); 其中i和j是表示前i个数中有j个小于号,j<=i-1 要 ...
- P2401 不等数列
题目描述 将1到n任意排列,然后在排列的每两个数之间根据他们的大小关系插入“>”和“<”.问在所有排列中,有多少个排列恰好有k个“<”.答案对2015取模. 注:1~n的排列指的是1 ...
随机推荐
- css集合--表示有未读消息小红点的解决
只需要一个<i>标签,放在需要的文本后面即可 ex:<span>待解决问题<i></i><span> i{ display:block; b ...
- 应用索引技术优化SQL 语句(转)
原文出处 一.前言 很多数据库系统性能不理想是因为系统没有经过整体优化,存在大量性能低下的SQL 语句.这类SQL语句性能不好的首要原因是缺乏高效的索引.没有索引除了导致语句本身运行速度慢外,更是导致 ...
- contenttype应用 , 缓存相关
一. Django的contenttypes contenttypes 是Django内置的一个应用,可以追踪项目中所有 app和model 的对应关系,并记录在 django_content_typ ...
- centos7 永久修改主机名
hostnamectl set-hostname xxx 一劳永逸,永绝后患
- ARP之windows下的ARP命令
ARP之windows下的ARP命令 arp -a 查看当前电脑上的ARP映射表.可以看到当前的ARP的映射关系是动态的还是静态的. arp -s w.x.y.z aa-bb-cc-dd-ee-ff ...
- T60
The smooth contour of the sculpture is wonderful.Her commitment to a great cause degenerated from a ...
- (转)C++经典面试题(最全,面中率最高)
1.new.delete.malloc.free关系 delete会调用对象的析构函数,和new对应free只会释放内存,new调用构造函数.malloc与free是C++/C语言的标准库函数,new ...
- 网络编程学习笔记-MAC地址和IP地址的关系
简单地说:ip地址是服务商给你的,mac地址是你的网卡物理地址. 一.IP地址 对于IP地址,相信大家都很熟悉,即指使用TCP/IP协议指定给主机的32位地址.IP地址由用点分隔开的4个8八位组构成, ...
- Linux网络编程 gethostbyaddr()
C语言函数 概述: 返回对应于给定地址的主机信息. #include <winsock.h> struct hostent FAR *PASCAL FAR gethostbyaddr(co ...
- Qt图形视图体系结构
导读:本文主要翻译自QT 5.9.3GraphicsView官方文档 一.GraphicsView框架简介 QT4.2开始引入了Graphics View框架用来取代QT3中的Canvas模块,并作出 ...