P3252 [JLOI2012]树

题目描述

在这个问题中,给定一个值S和一棵树。在树的每个节点有一个正整数,问有多少条路径的节点总和达到S。路径中节点的深度必须是升序的。假设节点1是根节点,根的深度是0,它的儿子节点的深度为1。路径不必一定从根节点开始。

输入输出格式

输入格式:

第一行是两个整数N和S,其中N是树的节点数。 第二行是N个正整数,第i个整数表示节点i的正整数。 接下来的N-1行每行是2个整数x和y,表示y是x的儿子。

输出格式:

输出路径节点总和为S的路径数量。

输入输出样例

输入样例#1:

3 3
1 2 3
1 2
1 3
输出样例#1:

2

说明

对于100%数据,N<=100000,所有权值以及S都不超过1000。

zz,才开时的时候读错题目了,然后数组内存的与我要存的不一样,结果我竟然忘记改了!!傻不拉几的交了6遍,发现全部零分、、、

for循环,dfs找一每一个点往下的路径,超时

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define N 210000
using namespace std;
bool vis[N];
int n,m,x,y,ans,tot,root;
int  a[N],fa[N],sum[N],deep[N],head[N];
int read()
{
    ,f=; char ch=getchar();
    ; ch=getchar();}
    +ch-'; ch=getchar();}
    return x*f;
}
struct Edge
{
    int to,next,from;
}edge[N<<];
int add(int x,int y)
{
    tot++;
    edge[tot].to=y;
    edge[tot].next=head[x];
    head[x]=tot;
}
int dfs(int x)
{
    sum[x]=sum[fa[x]]+a[x];
    for(int i=head[x];i;i=edge[i].next)
    {
        int to=edge[i].to;
        if(!vis[to]&&fa[x]!=to)
        {
            vis[to]=true;
            dfs(to);
            vis[to]=false;
        }
    }
}
int main()
{
    n=read(),m=read();
    ;i<=n;i++)
     a[i]=read();
    ;i<n;i++)
    {
        x=read(),y=read();
        add(x,y);fa[y]=x;
     }
    ;i<=n;i++)
    {
        memset(sum,,sizeof(sum));
        dfs(i);
        ;i<=n;i++)
        if(sum[i]==m)  ans++;
      }
    printf("%d",ans);
    ;
}

TLE的dfs

依旧是dfs,不过我们不是以每一个点为根节点进行搜索,而是在dfs到每一个点的时候,我们以每一个点为叶子节点,然后向上搜索,判断路径长度是否已经到达m,我们要在向上搜的时候搜到根节点便停止搜索,防止在while中死循环!

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define N 210000
using namespace std;
bool vis[N];
int n,m,x,y,ans,tot,sum,root;
int  a[N],fa[N],deep[N],head[N];
int read()
{
    ,f=; char ch=getchar();
    ; ch=getchar();}
    +ch-'; ch=getchar();}
    return x*f;
}
struct Edge
{
    int to,next,from;
}edge[N<<];
int add(int x,int y)
{
    tot++;
    edge[tot].to=y;
    edge[tot].next=head[x];
    head[x]=tot;
}
int pd(int x)
{
    sum=a[x];
    while(sum<m)
    {
        sum+=a[fa[x]],x=fa[x];
        if(!fa[x]) break;
    }
    if(sum==m) return true;
    return false;
}
int dfs(int x)
{
    for(int i=head[x];i;i=edge[i].next)
    {
        int to=edge[i].to;
        if(!vis[to]&&fa[x]!=to)
        {
            vis[to]=true;
            if(pd(to)) ans++;
            pd(to),dfs(to);
            vis[to]=false;
        }
    }
    return ans;
}
int main()
{
    n=read(),m=read();
    ;i<=n;i++)
     a[i]=read();
    ;i<n;i++)
    {
        x=read(),y=read();
        add(x,y);fa[y]=x;
     }
    ;i<=n;i++)
     if(!fa[i]) root=i;
    dfs(root);
    printf("%d",ans);
    ;
}

洛谷——P3252 [JLOI2012]树的更多相关文章

  1. 洛谷 P3252 [JLOI2012]树

    P3252 [JLOI2012]树 题目描述 在这个问题中,给定一个值S和一棵树.在树的每个节点有一个正整数,问有多少条路径的节点总和达到S.路径中节点的深度必须是升序的.假设节点1是根节点,根的深度 ...

  2. 洛谷P3252 [JLOI2012]树

    题目描述 在这个问题中,给定一个值S和一棵树.在树的每个节点有一个正整数,问有多少条路径的节点总和达到S.路径中节点的深度必须是升序的.假设节点1是根节点,根的深度是0,它的儿子节点的深度为1.路径不 ...

  3. 洛谷1087 FBI树 解题报告

    洛谷1087 FBI树 本题地址:http://www.luogu.org/problem/show?pid=1087 题目描述 我们可以把由“0”和“1”组成的字符串分为三类:全“0”串称为B串,全 ...

  4. 洛谷P3018 [USACO11MAR]树装饰Tree Decoration

    洛谷P3018 [USACO11MAR]树装饰Tree Decoration树形DP 因为要求最小,我们就贪心地用每个子树中的最小cost来支付就行了 #include <bits/stdc++ ...

  5. NOIP2017提高组Day2T3 列队 洛谷P3960 线段树

    原文链接https://www.cnblogs.com/zhouzhendong/p/9265380.html 题目传送门 - 洛谷P3960 题目传送门 - LOJ#2319 题目传送门 - Vij ...

  6. 洛谷P3703 [SDOI2017]树点涂色(LCT,dfn序,线段树,倍增LCA)

    洛谷题目传送门 闲话 这是所有LCT题目中的一个异类. 之所以认为是LCT题目,是因为本题思路的瓶颈就在于如何去维护同颜色的点的集合. 只不过做着做着,感觉后来的思路(dfn序,线段树,LCA)似乎要 ...

  7. 洛谷P3372线段树1

    难以平复鸡冻的心情,虽然可能在大佬眼里这是水题,但对蒟蒻的我来说这是个巨大的突破(谢谢我最亲爱的lp陪我写完,给我力量).网上关于线段树的题解都很玄学,包括李煜东的<算法竞赛进阶指南>中的 ...

  8. 洛谷P3830 随机树(SHOI2012)概率期望DP

    题意:中文题,按照题目要求的二叉树生成方式,问(1)叶平均深度 (2)树平均深度 解法:这道题看完题之后完全没头绪,无奈看题解果然不是我能想到的qwq.题解参考https://blog.csdn.ne ...

  9. 洛谷 P3714 - [BJOI2017]树的难题(点分治)

    洛谷题面传送门 咦?鸽子 tzc 竟然来补题解了?incredible( 首先看到这样类似于路径统计的问题我们可以非常自然地想到点分治.每次我们找出每个连通块的重心 \(x\) 然后以 \(x\) 为 ...

随机推荐

  1. RSA非对称加密算法实现过程

    RSA非对称加密算法实现过程 非对称加密算法有很多,RSA算法就是其中比较出名的算法之一,下面是具体实现过程 <?php /** */ class Rsa { /** * private key ...

  2. crond定时操作 crontab

    * * * * *  分别表示 分钟  小时  日  月  星期(0-6) 30 17,28,19 * * *  或 30 17-19 * * *  在每天的17-19小时半点时刻执行 30 8-18 ...

  3. Down the Pyramid

    Do you like number pyramids? Given a number sequence that represents the base, you are usually suppo ...

  4. python基础学习笔记——正则表达式

    1.什么是正则? 正则就是用一些具有特殊含义的符号组合到一起(称为正则表达式)来描述字符或者字符串的方法.或者说:正则就是用来描述一类事物的规则.(在Python中)它内嵌在Python中,并通过 r ...

  5. MongoDB学习-->命令行增删改查&JAVA驱动操作Mongodb

    MongoDB 是一个基于分布式文件存储的数据库. 由 C++ 语言编写.旨在为 WEB 应用提供可扩展的高性能数据存储解决方案. MongoDB 是一个介于关系数据库和非关系数据库之间的产品,是非关 ...

  6. ip 核生成 rom 及questasim仿真时需要注意的问题

    IP 核生成 ROM 步骤1:Tools --> MegaWizard Plug-In Manager 步骤2:Create a new custom megafuction variation ...

  7. Leetcode 472.连接词

    连接词 给定一个不含重复单词的列表,编写一个程序,返回给定单词列表中所有的连接词. 连接词的定义为:一个字符串完全是由至少两个给定数组中的单词组成的. 示例: 输入: ["cat" ...

  8. 【转载】用OCTAVE实现一元线性回归的梯度下降算法

    原文地址:http://www.cnblogs.com/KID-XiaoYuan/p/7247481.html STEP1 PLOTTING THE DATA 在处理数据之前,我们通常要了解数据,对于 ...

  9. [uiautomator篇][exist 存在,但click错误]

    uiautomator定位页面元素是,定位存在的;但是click的时候,发现点的位置不对,(不知道是android系统的问题还是uiautomator的问题,初步怀疑是系统的问题)

  10. C语言总结(1)

    1scanf( )和printf( )属于系统的函数,分别表示输入和输出. 2.所有C语言的程序只有一个main( )函数,从这里开始运行. 3.程序先执行main( ),调用scanf( ),最后输 ...