n阶的法里数列是0和1之间最简分数数列,由小至大排列,每个分数的分母不大于n

Stern-Brocot树(SB Tree)可以生成这个序列

{0/1,1/1}
{0/1,1/2,1/1}
{0/1,1/3,1/2,2/3,1/1}
{0/1,1/4,1/3,1/2,2/3,3/4,1/1}
{0/1,1/5,1/4,1/3,2/5,1/2,3/5,2/3,3/4,4/5,1/1}
{0/1,1/6,1/5,1/4,1/3,2/5,1/2,3/5,2/3,3/4,4/5,5/6,1/1}
{0/1,1/7,1/6,1/5,1/4,2/7,1/3,2/5,3/7,1/2,4/7,3/5,2/3,5/7,3/4,4/5,5/6,6/7,1/1}
{0/1,1/8,1/7,1/6,1/5,1/4,2/7,1/3,3/8,2/5,3/7,1/2,4/7,3/5,5/8,2/3,5/7,3/4,4/5,5/6,6/7,7/8,1/1}
{0/1,1/9,1/8,1/7,1/6,1/5,2/9,1/4,2/7,1/3,3/8,2/5,3/7,4/9,1/2,5/9,4/7,3/5,5/8,2/3,5/7,3/4,7/9,4/5,5/6,6/7,7/8,8/9,1/1}
{0/1,1/10,1/9,1/8,1/7,1/6,1/5,2/9,1/4,2/7,3/10,1/3,3/8,2/5,3/7,4/9,1/2,5/9,4/7,3/5,5/8,2/3,7/10,5/7,3/4,7/9,4/5,5/6,6/7,7/8,8/9,9/10,1/1}

Farey sequences UVA - 10408

求n阶Farey sequences的第k项,找到下一项的递推式,也就是基本不等式

#include <stdio.h>
int main(){
int n,k;
while(~scanf("%d%d",&n,&k)){
int a0=,a1=,b0=,b1=n,a2,b2;
for(int i=;i<k;i++){
int c=(n+b0)/b1;
a2=c*a1-a0;
b2=c*b1-b0;
a0=a1,a1=a2;
b0=b1,b1=b2;
}
printf("%d/%d\n",a1,b1);
}
return ;
}

X - Farey Sequence

The Farey Sequence Fn for any integer n with n >= 2 is the set of irreducible rational numbers a/b with 0 < a < b <= n and gcd(a,b) = 1 arranged in increasing order. The first few are 
F2 = {1/2} 
F3 = {1/3, 1/2, 2/3} 
F4 = {1/4, 1/3, 1/2, 2/3, 3/4} 
F5 = {1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5}

You task is to calculate the number of terms in the Farey sequence Fn.

Input

There are several test cases. Each test case has only one line, which contains a positive integer n (2 <= n <= 10 6). There are no blank lines between cases. A line with a single 0 terminates the input.

Output

For each test case, you should output one line, which contains N(n) ---- the number of terms in the Farey sequence Fn. 

Sample Input

2
3
4
5
0

Sample Output

1
3
5
9

这个函数的个数有个近似值,但是这个要求准确的个数,这个个数也没什么规律

Fn是分母是小于n的,而且其他和他互质,欧拉函数是积性函数,所以欧拉函数求下前缀和就行了

E(x)表示比x小的且与x互质的正整数的个数,也就是欧拉函数

#include <stdio.h>
const int N=1e6+;
typedef __int64 ll;
int phi[N],prime[N];
ll sum[N];
bool vis[N];
void Euler()
{
phi[]=;
int cnt=;
for(int i=;i<=1e6;i++)
{
if(!vis[i]){prime[++cnt]=i;phi[i]=i-;}
for(int j=;j<=cnt&&prime[j]*i<=1e6;j++)
{
vis[prime[j]*i]=;
if(i%prime[j])phi[prime[j]*i]=phi[i]*(prime[j]-);
else {phi[prime[j]*i]=phi[i]*prime[j];break;}
}
}
}
int main()
{
Euler();sum[]=;
for(int i=;i<=1e6;i++)
sum[i]+=sum[i-]+phi[i];
int n;
while(~scanf("%d",&n)){
if(!n)break;
printf("%I64d\n",sum[n]);
}
return ;
}

2866: Farey Sequence Again 

时间限制(普通/Java):1000MS/3000MS     内存限制:65536KByte
总提交: 14            测试通过:7

描述

The Farey sequence Fn for any positive integer n is the set of irreducible rational numbers a/b with 0<a<b<=n and (a, b) = 1 arranged in increasing order. Here (a, b) mean the greatest common divisor of a and b. For example:
            F2 = {1/2}
            F3 = {1/3, 1/2, 2/3}
      Given two positive integers N and K, with K less than N, you need to find out the K-th smallest element of the Farey sequence FN.

输入

The first line of input is the number of test case T, 1<=T<=1000. Then each test case contains two positive integers N and K. 1<=K<N<=10^9.

输出

For each test case output the Kth smallest element of the Farey sequence FN in a single line.

样例输入

样例输出

题目来源

Asia Chengdu Pre 2008

这个题是真的难啊,想了想查了查相关资料都做不了,最后竟然是利用这个级数增长很快,能互质的1,2,3用完就到1e9了,根本到不了n,贼鸡儿难想,%大佬,TOJ也有高人啊

Updog prepared to enjoy his delicious supper. At the very time he was ready to eat, a serious accident occurred—GtDzx appeared!! GtDzx declared his hadn't eaten anything for 3 days (obviously he was lying) and required Updog to share the cake with him. Further more, he threatened Updog that if Updog refused him, he would delete Updog's account in POJ! Thus Updog had no choice.

Updog intended to cut the cake into (s ≥ 1) pieces evenly, and then gave t(0≤ t ≤ s) pieces to GtDzx. Apparently GtDzx might get different amount of cake for different s and t. Note that = 12, = 4 and = 6, = 2 will be regarded as the same case since GtDzx will get equal amount in the two cases. Updog wouldn't separate the cake into more than N pieces.

After sorted all available cases according to the amount of cake for GtDzx, in the first case no cake to gave to GtDzx (= 0) and in the last case GtDzx would get the whole cake (= t). Updog wondered that how much cake GtDzx would get in the k-th case.

Input

The first line of the input file contains two integers (1 ≤ N ≤ 5000) and C(0 ≤ C≤ 3000). The following C lines each contains a positive integer describe C query respectively. The i-th query ki is to ask GtDzx's share of whole cake in the ki-th case .

Output

Answer each query in a separated line, according to the order in the input.

Sample Input

5 4
1
7
11
12

Sample Output

0/1
3/5
1/1
No Solution

这个题也是这个内容,但是也没那么难啊,存一下所有的查询就好了

Farey sequences的更多相关文章

  1. [LeetCode] Repeated DNA Sequences 求重复的DNA序列

    All DNA is composed of a series of nucleotides abbreviated as A, C, G, and T, for example: "ACG ...

  2. [Leetcode] Repeated DNA Sequences

    All DNA is composed of a series of nucleotides abbreviated as A, C, G, and T, for example: "ACG ...

  3. poj2478 Farey Sequence (欧拉函数)

    Farey Sequence 题意:给定一个数n,求在[1,n]这个范围内两两互质的数的个数.(转化为给定一个数n,比n小且与n互质的数的个数) 知识点: 欧拉函数: 普通求法: int Euler( ...

  4. POJ 2478 Farey Sequence

     名字是法雷数列其实是欧拉phi函数              Farey Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submi ...

  5. 论文阅读(Weilin Huang——【AAAI2016】Reading Scene Text in Deep Convolutional Sequences)

    Weilin Huang--[AAAI2016]Reading Scene Text in Deep Convolutional Sequences 目录 作者和相关链接 方法概括 创新点和贡献 方法 ...

  6. leetcode 187. Repeated DNA Sequences 求重复的DNA串 ---------- java

    All DNA is composed of a series of nucleotides abbreviated as A, C, G, and T, for example: "ACG ...

  7. [UCSD白板题] Longest Common Subsequence of Three Sequences

    Problem Introduction In this problem, your goal is to compute the length of a longest common subsequ ...

  8. Python数据类型之“序列概述与基本序列类型(Basic Sequences)”

    序列是指有序的队列,重点在"有序". 一.Python中序列的分类 Python中的序列主要以下几种类型: 3种基本序列类型(Basic Sequence Types):list. ...

  9. Extract Fasta Sequences Sub Sets by position

    cut -d " " -f 1 sequences.fa | tr -s "\n" "\t"| sed -s 's/>/\n/g' & ...

随机推荐

  1. LR脚本录制方式说明

    1.LR脚本录制方式说明1)HTML-based script基于HTML的脚本从内存中读取并下载资源,较少的关联处理,可以加入图片检查,回放时需要解析返回的信息a-基于用户行为的方式 web_lin ...

  2. String 对象详解

    原文地址:http://zangweiren.javaeye.com/blog/209895 作者:臧圩人(zangweiren) 网址:http://zangweiren.javaeye.com & ...

  3. python 之网页解析器

    一.什么是网页解析器 1.网页解析器名词解释 首先让我们来了解下,什么是网页解析器,简单的说就是用来解析html网页的工具,准确的说:它是一个HTML网页信息提取工具,就是从html网页中解析提取出“ ...

  4. Windows系统命令行下编译连接C/C++源代码方法

    Windows系统下编译连接源代码方法:cl -GX test.c-GX: 启动同步异常处理上面的命令会产生可执行程序:test.exe在命令行中直接输入:test.exe 就可运行该程序 Tips: ...

  5. 有关mybatis的动态sql

    一般地,实现动态SQL都是在xml中使用等标签实现的. 我们在这里使用SQL构造器的方式, 即由abstract sql写出sql的过程, 当然感觉本质上还是一个StringBuilder, 来手动生 ...

  6. 2004: C语言实验——数日子(数组)

    2004: C语言实验——数日子 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 213  Solved: 111[Submit][Status][Web ...

  7. win7便笺元数据损坏,最新解决办法

    Windows7系统开机时出现“部分便笺的元数据已被破坏,便笺已将其恢复为默认值.”问题,最新解决办法,图文说明,亲测,希望可以帮到大家 工具/原料   Windows7系统 InkObj.dll.T ...

  8. session添加登录次数限制

    session 中设置了生存期,20分钟,输入密码错误次数保存到session 中,过一段时间自动解除: //登陆的用户名或者密码出错次数 int n = 0; if(logintimes == nu ...

  9. Spring AOP注解形式简单实现

    实现步骤: 1:导入类扫描的注解解析器 命名空间:xmlns:context="http://www.springframework.org/schema/context" xsi ...

  10. Python基础——模块与包

    在Python中,可以用import导入需要的模块.包.库.文件等. 把工作路径导入系统路径 import os#os是工作台 import sys#sys是系统 sys.path.append(os ...