Covering

Bob's school has a big playground, boys and girls always play games here after school.

To protect boys and girls from getting hurt when playing happily on the playground, rich boy Bob decided to cover the playground using his carpets.

Meanwhile, Bob is a mean boy, so he acquired that his carpets can not overlap one cell twice or more.

He has infinite carpets with sizes of 1×21×2 and 2×12×1, and the size of the playground is 4×n4×n.

Can you tell Bob the total number of schemes where the carpets can cover the playground completely without overlapping? 

InputThere are no more than 5000 test cases.

Each test case only contains one positive integer n in a line.

1≤n≤10181≤n≤1018 
OutputFor each test cases, output the answer mod 1000000007 in a line. 
Sample Input

1
2

Sample Output

1
5 题意:用1*2铺满4*n的地面。
特别综合的一道题。求法是先用模拟暴搜找出初始几个n的情况,//1 5 11 36 95 281 781 2245 6336 18061
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#define MAX 1005
#define INF 0x3f3f3f3f
#define MOD 1000000007
using namespace std;
typedef long long ll; int b[][MAX];
int n;
ll ans; void dfs(int s){
int i,j;
if(s==*n){
ans++;
return;
}
for(i=;i<=;i++){
for(j=;j<=n;j++){
if(b[i][j]==){
if(i+<=){
if(b[i+][j]==){
b[i][j]=;
b[i+][j]=;
dfs(s+);
b[i][j]=;
b[i+][j]=;
}
}
if(j+<=n){
if(b[i][j+]==){
b[i][j]=;
b[i][j+]=;
dfs(s+);
b[i][j]=;
b[i][j+]=;
}
}
return;
}
}
}
}
int main()
{
int i;
while(~scanf("%d",&n)){
memset(b,,sizeof(b));
ans=;
dfs();
printf("%lld\n",ans);
}
return ;
}

然后再找规律,猜想存在递推关系,项数可以一点点加,当用五层循环寻找递推系数关系时发现,存在一种相同的系数情况。//1 5 1 -1 0

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#define MAX 1005
#define INF 0x3f3f3f3f
#define MOD 1000000007
using namespace std;
typedef long long ll; int x[]={,,,,,,,,,,}; void find(int i){
for(int a=-;a<=;a++){
for(int b=-;b<=;b++){
for(int c=-;c<=;c++){
for(int d=-;d<=;d++){
for(int e=-;e<=;e++){
if(a*x[i-]+b*x[i-]+c*x[i-]+d*x[i-]+e==x[i]){
printf("%d:%d %d %d %d %d\n",i,a,b,c,d,e);
}
}
}
}
}
}
}
int main()
{
int n,i;
for(i=;i<=;i++){
find(i);
}
return ;
}

最后确定递推公式:f[i]=f[i-1]+5*f[i-2]+f[i-3]-f[i-4]+0。(注意:负数系数取余时要先加再余)然后套矩阵快速幂。
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<algorithm>
#define MAX 10
#define MOD 1000000007
using namespace std;
typedef long long ll; struct mat{
ll a[MAX][MAX];
}; mat operator *(mat x,mat y) //重载乘运算
{
mat ans;
memset(ans.a,,sizeof(ans.a));
for(int i=;i<=;i++){
for(int j=;j<=;j++){
for(int k=;k<=;k++){
ans.a[i][j]+=(x.a[i][k]*y.a[k][j]+MOD)%MOD; //先加后余,避免负数取模异常
ans.a[i][j]%=MOD;
}
}
}
return ans;
}
mat qMod(mat a,ll n) //矩阵快速幂
{
mat t;
t.a[][]=;t.a[][]=;t.a[][]=;t.a[][]=-;
t.a[][]=;t.a[][]=;t.a[][]=;t.a[][]=;
t.a[][]=;t.a[][]=;t.a[][]=;t.a[][]=;
t.a[][]=;t.a[][]=;t.a[][]=;t.a[][]=; //单位矩阵
while(n){
if(n&) a=t*a; //顺序不可颠倒
n>>=;
t=t*t;
}
return a;
}
int main()
{
ll n;
while(~scanf("%I64d",&n)){
if(n==) printf("1\n");
else if(n==) printf("5\n");
else if(n==) printf("11\n");
else if(n==) printf("36\n");
else{
mat a;
memset(a.a,,sizeof(a.a));
a.a[][]=;
a.a[][]=;
a.a[][]=;
a.a[][]=; //初始矩阵
a=qMod(a,n-);
printf("%I64d\n",a.a[][]);
}
}
return ;
}

HDU - 6185 Covering(暴搜+递推+矩阵快速幂)的更多相关文章

  1. HDU 5950 Recursive sequence 【递推+矩阵快速幂】 (2016ACM/ICPC亚洲区沈阳站)

    Recursive sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Other ...

  2. hdu 2604 递推 矩阵快速幂

    HDU 2604 Queuing (递推+矩阵快速幂) 这位作者讲的不错,可以看看他的 #include <cstdio> #include <iostream> #inclu ...

  3. hdu 6185 递推+矩阵快速幂

    思路:考虑全部铺满时,前2列的放法.有如下5种情况:(转自http://blog.csdn.net/elbadaernu/article/details/77825979 写的很详细 膜一下)  假设 ...

  4. HDU 2842 (递推+矩阵快速幂)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2842 题目大意:棒子上套环.第i个环能拿下的条件是:第i-1个环在棒子上,前i-2个环不在棒子上.每个 ...

  5. Recursive sequence HDU - 5950 (递推 矩阵快速幂优化)

    题目链接 F[1] = a, F[2] = b, F[i] = 2 * F[i-2] + F[i-1] + i ^ 4, (i >= 3) 现在要求F[N] 类似于斐波那契数列的递推式子吧, 但 ...

  6. [hdu 2604] Queuing 递推 矩阵快速幂

    Problem Description Queues and Priority Queues are data structures which are known to most computer ...

  7. HDU6030 Happy Necklace(递推+矩阵快速幂)

    传送门:点我 Little Q wants to buy a necklace for his girlfriend. Necklaces are single strings composed of ...

  8. 五校联考R1 Day1T3 平面图planar(递推 矩阵快速幂)

    题目链接 我们可以把棱柱拆成有\(n\)条高的矩形,尝试递推. 在计算的过程中,第\(i\)列(\(i\neq n\))只与\(i-1\)列有关,称\(i-1\)列的上面/下面为左上/左下,第\(i\ ...

  9. LightOJ 1244 - Tiles 猜递推+矩阵快速幂

    http://www.lightoj.com/volume_showproblem.php?problem=1244 题意:给出六种积木,不能旋转,翻转,问填充2XN的格子有几种方法.\(N < ...

随机推荐

  1. Swift语言概览

                     Swift语言概览 关于 这篇文章简要介绍了苹果于WWDC 2014公布的编程语言--Swift. 前言 在这里我觉得有必要提一下Brec Victor的Invent ...

  2. 【windows】更改最大动态端口数

    最近业务遇到一个奇怪的问题,一台iis服务器,居然报端口不足的错误,分析应该是服务器可用的动态端口数不够了,windows默认的动态端口范围为:1024-5000,也就是最多3977个动态端口可用,如 ...

  3. JDBC通用方法实现

    在一些测试项目中会用到纯粹的jdbc操作数据库,下面提供统一的方法实现. import java.sql.CallableStatement; import java.sql.Connection; ...

  4. Algorithm: Sieve of Eratosthenes

    寻找比n小的所有质数的方法. 2是质数, 2*i都是质数,同样3是质数,3*i也都是质数 代码如下 int n; vector<, true); prime[] = prime[] = fals ...

  5. HTML5/CSS3鼠标滑过图片滤镜动画效果

    在线演示 本地下载

  6. ActiveMQ之点对点使用

    package com.toov5.producer; import javax.jms.Connection; import javax.jms.JMSException; import javax ...

  7. Spring Boot2.0之Admin-UI分布式微服务监控中心

    前面https://www.cnblogs.com/toov5/p/9823353.html  说的很不好用哈哈 还需要json格式化 我们可以用Admin-UI 比较爽歪歪 原理: 将所有服务的监控 ...

  8. 1 准备学习redis

    首先,当然是搜索相关资料了 1 Redis 设计与实现 http://redisbook.com/ 2 Redis快速入门 http://www.yiibai.com/redis/redis_quic ...

  9. codeforces 659G G. Fence Divercity(dp)

    题目链接: G. Fence Divercity time limit per test 2 seconds memory limit per test 256 megabytes input sta ...

  10. PC样式reset参考

    /* html5doctor.com Reset Stylesheet */ * { padding:; margin:; list-style: none; } html, body, div, s ...