HDU - 6185 Covering(暴搜+递推+矩阵快速幂)
Covering
To protect boys and girls from getting hurt when playing happily on the playground, rich boy Bob decided to cover the playground using his carpets.
Meanwhile, Bob is a mean boy, so he acquired that his carpets can not overlap one cell twice or more.
He has infinite carpets with sizes of 1×21×2 and 2×12×1, and the size of the playground is 4×n4×n.
Can you tell Bob the total number of schemes where the carpets can cover the playground completely without overlapping?
InputThere are no more than 5000 test cases.
Each test case only contains one positive integer n in a line.
1≤n≤10181≤n≤1018
OutputFor each test cases, output the answer mod 1000000007 in a line.
Sample Input
1
2
Sample Output
1
5 题意:用1*2铺满4*n的地面。
特别综合的一道题。求法是先用模拟暴搜找出初始几个n的情况,//1 5 11 36 95 281 781 2245 6336 18061
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#define MAX 1005
#define INF 0x3f3f3f3f
#define MOD 1000000007
using namespace std;
typedef long long ll; int b[][MAX];
int n;
ll ans; void dfs(int s){
int i,j;
if(s==*n){
ans++;
return;
}
for(i=;i<=;i++){
for(j=;j<=n;j++){
if(b[i][j]==){
if(i+<=){
if(b[i+][j]==){
b[i][j]=;
b[i+][j]=;
dfs(s+);
b[i][j]=;
b[i+][j]=;
}
}
if(j+<=n){
if(b[i][j+]==){
b[i][j]=;
b[i][j+]=;
dfs(s+);
b[i][j]=;
b[i][j+]=;
}
}
return;
}
}
}
}
int main()
{
int i;
while(~scanf("%d",&n)){
memset(b,,sizeof(b));
ans=;
dfs();
printf("%lld\n",ans);
}
return ;
}
然后再找规律,猜想存在递推关系,项数可以一点点加,当用五层循环寻找递推系数关系时发现,存在一种相同的系数情况。//1 5 1 -1 0
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#define MAX 1005
#define INF 0x3f3f3f3f
#define MOD 1000000007
using namespace std;
typedef long long ll; int x[]={,,,,,,,,,,}; void find(int i){
for(int a=-;a<=;a++){
for(int b=-;b<=;b++){
for(int c=-;c<=;c++){
for(int d=-;d<=;d++){
for(int e=-;e<=;e++){
if(a*x[i-]+b*x[i-]+c*x[i-]+d*x[i-]+e==x[i]){
printf("%d:%d %d %d %d %d\n",i,a,b,c,d,e);
}
}
}
}
}
}
}
int main()
{
int n,i;
for(i=;i<=;i++){
find(i);
}
return ;
}
最后确定递推公式:f[i]=f[i-1]+5*f[i-2]+f[i-3]-f[i-4]+0。(注意:负数系数取余时要先加再余)然后套矩阵快速幂。
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<algorithm>
#define MAX 10
#define MOD 1000000007
using namespace std;
typedef long long ll; struct mat{
ll a[MAX][MAX];
}; mat operator *(mat x,mat y) //重载乘运算
{
mat ans;
memset(ans.a,,sizeof(ans.a));
for(int i=;i<=;i++){
for(int j=;j<=;j++){
for(int k=;k<=;k++){
ans.a[i][j]+=(x.a[i][k]*y.a[k][j]+MOD)%MOD; //先加后余,避免负数取模异常
ans.a[i][j]%=MOD;
}
}
}
return ans;
}
mat qMod(mat a,ll n) //矩阵快速幂
{
mat t;
t.a[][]=;t.a[][]=;t.a[][]=;t.a[][]=-;
t.a[][]=;t.a[][]=;t.a[][]=;t.a[][]=;
t.a[][]=;t.a[][]=;t.a[][]=;t.a[][]=;
t.a[][]=;t.a[][]=;t.a[][]=;t.a[][]=; //单位矩阵
while(n){
if(n&) a=t*a; //顺序不可颠倒
n>>=;
t=t*t;
}
return a;
}
int main()
{
ll n;
while(~scanf("%I64d",&n)){
if(n==) printf("1\n");
else if(n==) printf("5\n");
else if(n==) printf("11\n");
else if(n==) printf("36\n");
else{
mat a;
memset(a.a,,sizeof(a.a));
a.a[][]=;
a.a[][]=;
a.a[][]=;
a.a[][]=; //初始矩阵
a=qMod(a,n-);
printf("%I64d\n",a.a[][]);
}
}
return ;
}
HDU - 6185 Covering(暴搜+递推+矩阵快速幂)的更多相关文章
- HDU 5950 Recursive sequence 【递推+矩阵快速幂】 (2016ACM/ICPC亚洲区沈阳站)
Recursive sequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Other ...
- hdu 2604 递推 矩阵快速幂
HDU 2604 Queuing (递推+矩阵快速幂) 这位作者讲的不错,可以看看他的 #include <cstdio> #include <iostream> #inclu ...
- hdu 6185 递推+矩阵快速幂
思路:考虑全部铺满时,前2列的放法.有如下5种情况:(转自http://blog.csdn.net/elbadaernu/article/details/77825979 写的很详细 膜一下) 假设 ...
- HDU 2842 (递推+矩阵快速幂)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2842 题目大意:棒子上套环.第i个环能拿下的条件是:第i-1个环在棒子上,前i-2个环不在棒子上.每个 ...
- Recursive sequence HDU - 5950 (递推 矩阵快速幂优化)
题目链接 F[1] = a, F[2] = b, F[i] = 2 * F[i-2] + F[i-1] + i ^ 4, (i >= 3) 现在要求F[N] 类似于斐波那契数列的递推式子吧, 但 ...
- [hdu 2604] Queuing 递推 矩阵快速幂
Problem Description Queues and Priority Queues are data structures which are known to most computer ...
- HDU6030 Happy Necklace(递推+矩阵快速幂)
传送门:点我 Little Q wants to buy a necklace for his girlfriend. Necklaces are single strings composed of ...
- 五校联考R1 Day1T3 平面图planar(递推 矩阵快速幂)
题目链接 我们可以把棱柱拆成有\(n\)条高的矩形,尝试递推. 在计算的过程中,第\(i\)列(\(i\neq n\))只与\(i-1\)列有关,称\(i-1\)列的上面/下面为左上/左下,第\(i\ ...
- LightOJ 1244 - Tiles 猜递推+矩阵快速幂
http://www.lightoj.com/volume_showproblem.php?problem=1244 题意:给出六种积木,不能旋转,翻转,问填充2XN的格子有几种方法.\(N < ...
随机推荐
- 云服务器 ECS Linux CentOS 修改内核引导顺序
由于 CentOS 7 使用 grub2 作为引导程序,所以和 CentOS 6 有所不同,并不是修改 /etc/grub.conf 来修改启动项,需要如下操作: 1. 查看系统内部有多少个内核: c ...
- Go 语言中的数组是一种 值类型(不像 C/C++ 中是指向首元素的指针)
the-way-to-go_ZH_CN/07.1.md at master · Unknwon/the-way-to-go_ZH_CN https://github.com/Unknwon/the-w ...
- Regularization: how complicated the model is? Regularization, measures complexity of model 使预测准确、平稳 predictive stable
http://www.kdd.org/kdd2016/papers/files/rfp0697-chenAemb.pdf https://homes.cs.washington.edu/~tqchen ...
- php总结4——数组的定义及函数、冒泡排序
4.1 数组的定义 数组:变量存储的有序序列. 索引数组:下标为数字的数组. $数组名称(下标) 下标从0开始的数字. 直接定义: $arr[0]=123; $arr[1]="chi ...
- 【题解】P4247 [清华集训]序列操作(线段树修改DP)
[题解]P4247 [清华集训]序列操作(线段树修改DP) 一道神仙数据结构(DP)题. 题目大意 给定你一个序列,会区间加和区间变相反数,要你支持查询一段区间内任意选择\(c\)个数乘起来的和.对1 ...
- 我的Android进阶之旅------>Android使用正则表达式匹配扫描指定目录下的所有媒体文件(音乐、图像、视频文件)
今天使用正则表达式匹配指定目录下的所有媒体文件,下面将这份代码简化了,可以收藏下来,当作工具类. package match; import java.io.File; import java.uti ...
- X86/X64处理器体系结构及寻址模式
由8086/8088.x86.Pentium发展到core系列短短40多年间,处理器的时钟频率差点儿已接近极限.尽管如此,自从86年Intel推出386至今除了添加一些有关流媒体的指令如mmx/sse ...
- Java for LeetCode 109 Convert Sorted List to Binary Search Tree
Given a singly linked list where elements are sorted in ascending order, convert it to a height bala ...
- C++函数模板的显示调用与隐式调用
C++函数模板可以显示调用与可以隐式调用 首先定义函数模板: template <class T> inline const T& c_max (const T& a, c ...
- 20145239杜文超 《Java程序设计》第7周学习总结
20145239 <Java程序设计>第7周学习总结 教材学习内容总结 Lambda 认识Lambda语法 Lambda语法概述: Arrays的sort()方法可以用来排序,在使用sor ...