Mathematical Curse

  • 22.25%
  • 1000ms
  • 65536K
 

A prince of the Science Continent was imprisoned in a castle because of his contempt for mathematics when he was young, and was entangled in some mathematical curses. He studied hard until he reached adulthood and decided to use his knowledge to escape the castle.

There are NN rooms from the place where he was imprisoned to the exit of the castle. In the i^{th}ith room, there is a wizard who has a resentment value of a[i]a[i]. The prince has MM curses, the j^{th}jth curse is f[j]f[j], and f[j]f[j] represents one of the four arithmetic operations, namely addition('+'), subtraction('-'), multiplication('*'), and integer division('/'). The prince's initial resentment value is KK. Entering a room and fighting with the wizard will eliminate a curse, but the prince's resentment value will become the result of the arithmetic operation f[j]f[j] with the wizard's resentment value. That is, if the prince eliminates the j^{th}jth curse in the i^{th}ith room, then his resentment value will change from xx to (x\ f[j]\ a[i]x f[j] a[i]), for example, when x=1, a[i]=2, f[j]=x=1,a[i]=2,f[j]='+', then xx will become 1+2=31+2=3.

Before the prince escapes from the castle, he must eliminate all the curses. He must go from a[1]a[1] to a[N]a[N] in order and cannot turn back. He must also eliminate the f[1]f[1] to f[M]f[M] curses in order(It is guaranteed that N\ge MN≥M). What is the maximum resentment value that the prince may have when he leaves the castle?

Input

The first line contains an integer T(1 \le T \le 1000)T(1≤T≤1000), which is the number of test cases.

For each test case, the first line contains three non-zero integers: N(1 \le N \le 1000), M(1 \le M \le 5)N(1≤N≤1000),M(1≤M≤5) and K(-1000 \le K \le 1000K(−1000≤K≤1000), the second line contains NN non-zero integers: a[1], a[2], ..., a[N](-1000 \le a[i] \le 1000)a[1],a[2],...,a[N](−1000≤a[i]≤1000), and the third line contains MM characters: f[1], f[2], ..., f[M](f[j] =f[1],f[2],...,f[M](f[j]='+','-','*','/', with no spaces in between.

Output

For each test case, output one line containing a single integer.

样例输入复制

3
2 1 5
2 3
/
3 2 1
1 2 3
++
4 4 5
1 2 3 4
+-*/

样例输出复制

2
6
3

题目来源

ACM-ICPC 2018 焦作赛区网络预赛

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; const int kMaxN = ;
const int kMaxM = ; long long f[kMaxN][kMaxM];
long long g[kMaxN][kMaxM];
int a[kMaxN];
char curse[kMaxM]; int main() {
int T;
scanf("%d", &T);
for (int cas = ; cas <= T; ++cas) {
int n, m, k;
scanf("%d %d %d", &n, &m, &k);
memset(f, 0xa0, sizeof(f));
memset(g, 0x70, sizeof(g));
for (int i = ; i <= n; ++i) {
f[i][] = k;
g[i][] = k;
}
for (int i = ; i <= n; ++i) {
scanf("%d", &a[i]);
}
scanf("%s", curse);
for (int j = ; j <= m; ++j) {
for (int i = j; i <= n; ++i) {
f[i][j] = f[i - ][j];
g[i][j] = g[i - ][j];
if (curse[j - ] == '+') {
f[i][j] = max(f[i][j], f[i - ][j - ] + a[i]);
g[i][j] = min(g[i][j], g[i - ][j - ] + a[i]);
} else if (curse[j - ] == '-') {
f[i][j] = max(f[i][j], f[i - ][j - ] - a[i]);
g[i][j] = min(g[i][j], g[i - ][j - ] - a[i]);
} else if (curse[j - ] == '*') {
f[i][j] = max(f[i][j], f[i - ][j - ] * a[i]);
f[i][j] = max(f[i][j], g[i - ][j - ] * a[i]);
g[i][j] = min(g[i][j], f[i - ][j - ] * a[i]);
g[i][j] = min(g[i][j], g[i - ][j - ] * a[i]);
} else if (curse[j - ] == '/') {
f[i][j] = max(f[i][j], f[i - ][j - ] / a[i]);
f[i][j] = max(f[i][j], g[i - ][j - ] / a[i]);
g[i][j] = min(g[i][j], f[i - ][j - ] / a[i]);
g[i][j] = min(g[i][j], g[i - ][j - ] / a[i]);
}
//printf("[%d][%d] = %lld %lld\n", i, j, f[i][j], g[i][j]);
}
}
printf("%lld\n", f[n][m]);
}
return ;
}

ACM-ICPC2018焦作网络赛 Mathematical Curse(dp)的更多相关文章

  1. 2018焦作网络赛Mathematical Curse

    题意:开始有个数k,有个数组和几个运算符.遍历数组的过程中花费一个运算符和数组当前元素运算.运算符必须按顺序花费,并且最后要花费完.问得到最大结果. 用maxv[x][y]记录到第x个元素,用完了第y ...

  2. 焦作网络赛B-Mathematical Curse【dp】

    A prince of the Science Continent was imprisoned in a castle because of his contempt for mathematics ...

  3. HDU 4734 F(x) (2013成都网络赛,数位DP)

    F(x) Time Limit: 1000/500 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  4. 2018 ICPC 焦作网络赛 E.Jiu Yuan Wants to Eat

    题意:四个操作,区间加,区间每个数乘,区间的数变成 2^64-1-x,求区间和. 题解:2^64-1-x=(2^64-1)-x 因为模数为2^64,-x%2^64=-1*x%2^64 由负数取模的性质 ...

  5. ACM-ICPC 2018 焦作赛区网络预赛 B Mathematical Curse(DP)

    https://nanti.jisuanke.com/t/31711 题意 m个符号必须按顺序全用,n个房间需顺序选择,有个初始值,问最后得到的值最大是多少. 分析 如果要求出最大解,维护最大值是不能 ...

  6. 焦作网络赛K-Transport Ship【dp】

    There are NN different kinds of transport ships on the port. The i^{th}ith kind of ship can carry th ...

  7. ACM-ICPC2018焦作网络赛 Transport Ship(二进制背包+方案数)

    Transport Ship 25.78% 1000ms 65536K   There are NN different kinds of transport ships on the port. T ...

  8. HDU 4734 F(x) 2013 ACM/ICPC 成都网络赛

    传送门:http://acm.hdu.edu.cn/showproblem.php?pid=4734 数位DP. 用dp[i][j][k] 表示第i位用j时f(x)=k的时候的个数,然后需要预处理下小 ...

  9. 2013 ACM/ICPC 成都网络赛解题报告

    第三题:HDU 4730 We Love MOE Girls 传送门:http://acm.hdu.edu.cn/showproblem.php?pid=4730 水题~~~ #include < ...

随机推荐

  1. input file 选择Excel文件 相关操作

    1.HTML代码 <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="WebFo ...

  2. 九度OJ 1145:Candy Sharing Game(分享蜡烛游戏) (模拟)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:248 解决:194 题目描述: A number of students sit in a circle facing their teac ...

  3. IIS的ARR实现站点的负载均衡 nginx 对比

    windows下使用IIS的ARR实现站点的负载均衡 - CSDN博客 https://blog.csdn.net/zzy7075/article/details/73294713 IIS的ARR实现 ...

  4. mysql系列之2.mysql多实例

    使用场景 资金紧张; 并发访问不大; 门户网站; 实现 生产硬件配置: mem 32G / 双cpu 8核 / 磁盘6*600G sas 15k, 2-3个实例 安装组件 #yum install n ...

  5. windows系统下nodejs、npm、express的下载和安装教程——2016.11.09

    1. node.js下载 首先进入http://nodejs.org/dist/,这里面的版本呢,几乎每个月都出几个新的,建议大家下载最新版本,看看自己的电脑是多少位的,别下错了. 下载完解压到你想放 ...

  6. 我的Android进阶之旅------>Android中ListView中嵌套(ListView)控件时item的点击事件不起作的问题解决方法

    开发中常常需要自己定义Listview,去继承BaseAdapter,在adapter中按照需求进行编写,问题就出现了,可能会发生点击每一个item的时候没有反应,无法获取的焦点. 如果你的自定义Li ...

  7. SHA-1算法c语言实现

    安全哈希算法(Secure Hash Algorithm)主要适用于数字签名标准 (Digital Signature Standard DSS)里面定义的数字签名算法(Digital Signatu ...

  8. SAP采购寄售业务操作步骤

    [转自 http://blog.sina.com.cn/s/blog_6466e5f70100jghg.html] 这里所示的是比较完整的步骤,包含了:信息记录.采购合同.货源清单.采购申请.采购订单 ...

  9. mysql的安装与基本管理

    MySQL是一个关系型数据库管理系统,由瑞典MySQL AB 公司开发,目前属于 Oracle 旗下公司.MySQL 最流行的关系型数据库管理系统,在 WEB 应用方面MySQL是最好的 RDBMS ...

  10. Tomcat实现多主多备

    Nginx Upstream 实现简单双机主从热备 下面配置多主多从: upstream testproxy { server 127.0.0.1:8080; server 127.0.0.1:808 ...