GSS1

#include<cstdio>
#include<iostream>
#define lc k<<1
#define rc k<<1|1
using namespace std;
const int M=1e5+,N=M<<;
struct sgt{
int sum,gss,lgss,rgss;
}tr[N];
int n,m,a[N];
void updata(int k){
tr[k].sum=tr[lc].sum+tr[rc].sum;
tr[k].lgss=max(tr[lc].lgss,tr[lc].sum+tr[rc].lgss);
tr[k].rgss=max(tr[rc].rgss,tr[rc].sum+tr[lc].rgss);
tr[k].gss=max(max(tr[lc].gss,tr[rc].gss),tr[lc].rgss+tr[rc].lgss);
}
void build(int k,int l,int r){
if(l==r){
tr[k].sum=tr[k].gss=tr[k].lgss=tr[k].rgss=a[l];
return ;
}
int mid=l+r>>;
build(lc,l,mid);
build(rc,mid+,r);
updata(k);
}
sgt query(int k,int l,int r,int x,int y){
if(l==x&&r==y) return tr[k];
int mid=l+r>>;
if(y<=mid) return query(lc,l,mid,x,y);
else if(x>mid) return query(rc,mid+,r,x,y);
else{
sgt left,right,result;
left=query(lc,l,mid,x,mid);
right=query(rc,mid+,r,mid+,y);
result.sum=left.sum+right.sum;
result.lgss=max(left.lgss,left.sum+right.lgss);
result.rgss=max(right.rgss,right.sum+left.rgss);
result.gss=max(max(left.gss,right.gss),left.rgss+right.lgss);
return result;
}
}
int main(){
scanf("%d",&n);
for(int i=;i<=n;i++){
scanf("%d",&a[i]);
}
build(,,n);
scanf("%d",&m);
for(int i=,x,y;i<=m;i++){
scanf("%d%d",&x,&y);
printf("%d\n",query(,,n,x,y).gss);
}
return ;
}

GSS3

#include<cstdio>
#include<iostream>
#define lc k<<1
#define rc k<<1|1
using namespace std;
const int M=1e5+,N=M<<;
struct sgtment{
int sum,gss,lgss,rgss;
}tr[N];
int n,m,a[N];
void updata(int k){
tr[k].sum=tr[lc].sum+tr[rc].sum;
tr[k].lgss=max(tr[lc].lgss,tr[lc].sum+tr[rc].lgss);
tr[k].rgss=max(tr[rc].rgss,tr[rc].sum+tr[lc].rgss);
tr[k].gss=max(max(tr[lc].gss,tr[rc].gss),tr[lc].rgss+tr[rc].lgss);
}
void build(int k,int l,int r){
if(l==r){
tr[k].sum=tr[k].gss=tr[k].lgss=tr[k].rgss=a[l];
return ;
}
int mid=l+r>>;
build(lc,l,mid);
build(rc,mid+,r);
updata(k);
}
void change(int k,int l,int r,int pos,int val){
if(l==r){
tr[k].sum=tr[k].gss=tr[k].lgss=tr[k].rgss=val;
return ;
}
int mid=l+r>>;
if(pos<=mid) change(lc,l,mid,pos,val);
else change(rc,mid+,r,pos,val);
updata(k);
}
sgtment query(int k,int l,int r,int x,int y){
if(l==x&&r==y) return tr[k];
int mid=l+r>>;
if(y<=mid) return query(lc,l,mid,x,y);
else if(x>mid) return query(rc,mid+,r,x,y);
else{
sgtment left,right,result;
left=query(lc,l,mid,x,mid);
right=query(rc,mid+,r,mid+,y);
result.sum=left.sum+right.sum;
result.lgss=max(left.lgss,left.sum+right.lgss);
result.rgss=max(right.rgss,right.sum+left.rgss);
result.gss=max(max(left.gss,right.gss),left.rgss+right.lgss);
return result;
}
}
int main(){
scanf("%d",&n);
for(int i=;i<=n;i++){
scanf("%d",&a[i]);
}
build(,,n);
scanf("%d",&m);
for(int i=,opt,x,y;i<=m;i++){
scanf("%d%d%d",&opt,&x,&y);
if(opt) printf("%d\n",query(,,n,x,y).gss);
else change(,,n,x,y);
}
return ;
}

SPOJ - GSS1&&GSS3的更多相关文章

  1. spoj gss1 gss3

    传送门 gss1 gss3 spoj gss系列=最大字段和套餐 gss1就是gss3的无单点修改版 有区间查询和单点修改,考虑用线段树维护 我们要维护区间权值和\(s\),区间最大前缀和\(xl\) ...

  2. SPOJ GSS1 && GSS3 (无更新/更新单点,并询问区间最大连续和)

    http://www.spoj.com/problems/GSS1/ 题意:无更新询问区间最大连续和. 做法:线段树每个节点维护sum[rt],maxsum[rt],lsum[rt],rsum[rt] ...

  3. SPOJ GSS1 & GSS3&挂了的GSS5

    线段树然后yy一下,搞一搞. GSS1: 题意:求最大区间和. #include <cstdio> #include <algorithm> using namespace s ...

  4. SPOJ GSS1 - Can you answer these queries I(线段树维护GSS)

    Can you answer these queries I SPOJ - GSS1 You are given a sequence A[1], A[2], -, A[N] . ( |A[i]| ≤ ...

  5. [题解] SPOJ GSS1 - Can you answer these queries I

    [题解] SPOJ GSS1 - Can you answer these queries I · 题目大意 要求维护一段长度为 \(n\) 的静态序列的区间最大子段和. 有 \(m\) 次询问,每次 ...

  6. GSS系列(1)——GSS1&&GSS3

    题意:询问一个区间内的最大连续子段和(GSS1),并且有单点修改的操作(GSS2). 思路:这个题目在老人家的大白鼠里出现过,不过那个是求两个下标,并且相同取更小值.——传的东西更多,判断也稍微繁琐一 ...

  7. SPOJ - GSS1 —— 线段树 (结点信息合并)

    题目链接:https://vjudge.net/problem/SPOJ-GSS1 GSS1 - Can you answer these queries I #tree You are given ...

  8. SPOJ GSS1 Can you answer these queries I[线段树]

    Description You are given a sequence A[1], A[2], ..., A[N] . ( |A[i]| ≤ 15007 , 1 ≤ N ≤ 50000 ). A q ...

  9. SPOJ GSS1 Can you answer these queries I

    Time Limit: 115MS   Memory Limit: 1572864KB   64bit IO Format: %lld & %llu Description You are g ...

随机推荐

  1. LeetCode OJ-- Simplify Path **

    https://oj.leetcode.com/problems/simplify-path/ 对linux路径的规范化,属于字符串处理的题目.细节很多. #include <iostream& ...

  2. Web前端入门知识

    第一阶段:理论知识 第一章:协议理解 第二阶段:了解知识 第二章:前端简介 第三阶段:入门知识 第三章:标签结构 第四章:常用标签 第四阶段:样式搭配 第五章:样式初见 第六章:属性选择 第七章:属性 ...

  3. Network | NAT

    在计算机网络中,网络地址转换(Network Address Translation或简称NAT),也叫做网络掩蔽或者IP掩蔽(IP masquerading),是一种在IP封包通过路由器或防火墙时重 ...

  4. 缓存区溢出漏洞工具Doona

    缓存区溢出漏洞工具Doona   Doona是缓存区溢出漏洞工具BED的分支.它在BED的基础上,增加了更多插件,如nttp.proxy.rtsp.tftp等.同时,它对各个插件扩充了攻击载荷,这里也 ...

  5. VMWare上Linux系统下载安装教程

    原文链接:http://www.studyshare.cn/blog-front//software/details/1162/0 一.下载 linux镜像文件下载,此处只提供CentOS 6.8版本 ...

  6. 使用jersey组件向图片资源服务器上传图片报403,405,409 Method Not Allowed错误

    一.错误如下 在使用Jersey进行图片跨服务上传时遇到了如下问题: 二.代码如下 1.pom.xml <dependency> <groupId>com.sun.jersey ...

  7. 前端必备性能知识 - http2.0

    前端开发中,性能是一定绕不开的,今天就来说一下前后台通信中最重要的一个通道--HTTP2.0 最开始的通讯协议叫http1.0,作为始祖级的它,定义了最基本的数据结构,请求头和请求体,以及每一个字段的 ...

  8. 如何使用Medieval CUE Splitter分割ape,合并ape,制作cue

    1 下载并运行这个软件,点击打开CUE文件,然后找到需要打开的CUE文件.   2 软件会立即弹出一个再次要求打开APE文件的对话框.打开之后会发现APE音乐已经被分割成了一小段一小段.   3 点击 ...

  9. 【KMP】hdu1867(A + B for you again) 杭电java a题真坑

    点击打开链接 Problem Description Generally speaking, there are a lot of problems about strings processing. ...

  10. 微型企业如何使用odoo

    作者 jeffery Q913547235 保留所有权利     Odoo可以帮助微型企业提升运营效率,做到电子化,信息化. 管理仓库进销存,建立收货单.交货单,并基于收货.交货情况确认应收款和应付款 ...