SPOJ - GSS1&&GSS3
GSS1
#include<cstdio>
#include<iostream>
#define lc k<<1
#define rc k<<1|1
using namespace std;
const int M=1e5+,N=M<<;
struct sgt{
int sum,gss,lgss,rgss;
}tr[N];
int n,m,a[N];
void updata(int k){
tr[k].sum=tr[lc].sum+tr[rc].sum;
tr[k].lgss=max(tr[lc].lgss,tr[lc].sum+tr[rc].lgss);
tr[k].rgss=max(tr[rc].rgss,tr[rc].sum+tr[lc].rgss);
tr[k].gss=max(max(tr[lc].gss,tr[rc].gss),tr[lc].rgss+tr[rc].lgss);
}
void build(int k,int l,int r){
if(l==r){
tr[k].sum=tr[k].gss=tr[k].lgss=tr[k].rgss=a[l];
return ;
}
int mid=l+r>>;
build(lc,l,mid);
build(rc,mid+,r);
updata(k);
}
sgt query(int k,int l,int r,int x,int y){
if(l==x&&r==y) return tr[k];
int mid=l+r>>;
if(y<=mid) return query(lc,l,mid,x,y);
else if(x>mid) return query(rc,mid+,r,x,y);
else{
sgt left,right,result;
left=query(lc,l,mid,x,mid);
right=query(rc,mid+,r,mid+,y);
result.sum=left.sum+right.sum;
result.lgss=max(left.lgss,left.sum+right.lgss);
result.rgss=max(right.rgss,right.sum+left.rgss);
result.gss=max(max(left.gss,right.gss),left.rgss+right.lgss);
return result;
}
}
int main(){
scanf("%d",&n);
for(int i=;i<=n;i++){
scanf("%d",&a[i]);
}
build(,,n);
scanf("%d",&m);
for(int i=,x,y;i<=m;i++){
scanf("%d%d",&x,&y);
printf("%d\n",query(,,n,x,y).gss);
}
return ;
}
GSS3
#include<cstdio>
#include<iostream>
#define lc k<<1
#define rc k<<1|1
using namespace std;
const int M=1e5+,N=M<<;
struct sgtment{
int sum,gss,lgss,rgss;
}tr[N];
int n,m,a[N];
void updata(int k){
tr[k].sum=tr[lc].sum+tr[rc].sum;
tr[k].lgss=max(tr[lc].lgss,tr[lc].sum+tr[rc].lgss);
tr[k].rgss=max(tr[rc].rgss,tr[rc].sum+tr[lc].rgss);
tr[k].gss=max(max(tr[lc].gss,tr[rc].gss),tr[lc].rgss+tr[rc].lgss);
}
void build(int k,int l,int r){
if(l==r){
tr[k].sum=tr[k].gss=tr[k].lgss=tr[k].rgss=a[l];
return ;
}
int mid=l+r>>;
build(lc,l,mid);
build(rc,mid+,r);
updata(k);
}
void change(int k,int l,int r,int pos,int val){
if(l==r){
tr[k].sum=tr[k].gss=tr[k].lgss=tr[k].rgss=val;
return ;
}
int mid=l+r>>;
if(pos<=mid) change(lc,l,mid,pos,val);
else change(rc,mid+,r,pos,val);
updata(k);
}
sgtment query(int k,int l,int r,int x,int y){
if(l==x&&r==y) return tr[k];
int mid=l+r>>;
if(y<=mid) return query(lc,l,mid,x,y);
else if(x>mid) return query(rc,mid+,r,x,y);
else{
sgtment left,right,result;
left=query(lc,l,mid,x,mid);
right=query(rc,mid+,r,mid+,y);
result.sum=left.sum+right.sum;
result.lgss=max(left.lgss,left.sum+right.lgss);
result.rgss=max(right.rgss,right.sum+left.rgss);
result.gss=max(max(left.gss,right.gss),left.rgss+right.lgss);
return result;
}
}
int main(){
scanf("%d",&n);
for(int i=;i<=n;i++){
scanf("%d",&a[i]);
}
build(,,n);
scanf("%d",&m);
for(int i=,opt,x,y;i<=m;i++){
scanf("%d%d%d",&opt,&x,&y);
if(opt) printf("%d\n",query(,,n,x,y).gss);
else change(,,n,x,y);
}
return ;
}
SPOJ - GSS1&&GSS3的更多相关文章
- spoj gss1 gss3
传送门 gss1 gss3 spoj gss系列=最大字段和套餐 gss1就是gss3的无单点修改版 有区间查询和单点修改,考虑用线段树维护 我们要维护区间权值和\(s\),区间最大前缀和\(xl\) ...
- SPOJ GSS1 && GSS3 (无更新/更新单点,并询问区间最大连续和)
http://www.spoj.com/problems/GSS1/ 题意:无更新询问区间最大连续和. 做法:线段树每个节点维护sum[rt],maxsum[rt],lsum[rt],rsum[rt] ...
- SPOJ GSS1 & GSS3&挂了的GSS5
线段树然后yy一下,搞一搞. GSS1: 题意:求最大区间和. #include <cstdio> #include <algorithm> using namespace s ...
- SPOJ GSS1 - Can you answer these queries I(线段树维护GSS)
Can you answer these queries I SPOJ - GSS1 You are given a sequence A[1], A[2], -, A[N] . ( |A[i]| ≤ ...
- [题解] SPOJ GSS1 - Can you answer these queries I
[题解] SPOJ GSS1 - Can you answer these queries I · 题目大意 要求维护一段长度为 \(n\) 的静态序列的区间最大子段和. 有 \(m\) 次询问,每次 ...
- GSS系列(1)——GSS1&&GSS3
题意:询问一个区间内的最大连续子段和(GSS1),并且有单点修改的操作(GSS2). 思路:这个题目在老人家的大白鼠里出现过,不过那个是求两个下标,并且相同取更小值.——传的东西更多,判断也稍微繁琐一 ...
- SPOJ - GSS1 —— 线段树 (结点信息合并)
题目链接:https://vjudge.net/problem/SPOJ-GSS1 GSS1 - Can you answer these queries I #tree You are given ...
- SPOJ GSS1 Can you answer these queries I[线段树]
Description You are given a sequence A[1], A[2], ..., A[N] . ( |A[i]| ≤ 15007 , 1 ≤ N ≤ 50000 ). A q ...
- SPOJ GSS1 Can you answer these queries I
Time Limit: 115MS Memory Limit: 1572864KB 64bit IO Format: %lld & %llu Description You are g ...
随机推荐
- fuelgauge
void fg_init(void *queue, void (*bs_fuel_gauge_status)(void)) { fg_init_ready = bs_fuel_gauge_status ...
- JS-日历签到
实现的功能: 首先这是前端显示的内容,没有后台的配置哈: 1.显示当前年月下的日历表: 2.今天的日期独有背景色: 3.当月今天之前的日子号数颜色变浅,表示日期已过: 4.点击日期签到:(只能点击当天 ...
- 详解DNS域名解析全过程
关于dns域名解析的大致过程很多人都知道,但有些细枝末节的东西容易遗忘,今天有空整理一下,作为以后复习用,如有不对的地方,还望指正.解析大致过程如图(不喜欢看图的可以直接跳过): 当一个用户在地址栏输 ...
- 深刻理解JavaScript---闭包
JavaScript 闭包是指那些能够访问独立(自由)变量的函数 (变量在本地使用,但定义在一个封闭的作用域中).换句话说,这些函数可以“记忆”它被创建时候的环境.——这句话其实有点难以理解.我觉 ...
- openfire Android学习(五)------连接断开重连
首先要创建连接监听器,用来监听连接状态,这里我写了一个类 继承了ConnectionListener,重写了里面5个方法,最重要的两个方法connectionClosed()和connectionCl ...
- DevExpress控件GridControl使用 z
设置选中行的背景色.而不改变前景色. EnableAppearanceFocusedCell = False, EnableAppearanceFocusedRow = False private v ...
- Activity的启动模式全解standard,singleTop,singleTask,singleInstance
在android中控制Activity的启动模式的属性主要控制两大功能: 1,控制activity 进入哪一个任务task 中, 有两种可能,进入启动task中,进入指定taskAffinity的 ...
- jmeter源码编译
转载:http://blog.csdn.net/wanglha/article/details/42004943 一.下载源码 git clone git://github.com/apache/jm ...
- 几种支持动作模型格式的比较(MD2,MD5,sea3d) 【转】
最近使用了几种不同的模型格式做人物动作的表现,记录一下优缺点 1) MD2 数据内容: 记录了所有动作顶点数据 数据格式: 二进制 动作文件: 动作文件合并在一个模型文件 文件大小: 动作多时很大 ...
- hql 多对多查询
这种查询,hibernate 建议用 From Dealer s inner join fetch s.carSerieses cs 实现,注意这种实现只支持b.c,不支持b.cs. 如果要用b.c ...