【BZOJ3307】雨天的尾巴

Description

N个点,形成一个树状结构。有M次发放,每次选择两个点x,y对于x到y的路径上(含x,y)每个点发一袋Z类型的物品。完成所有发放后,每个点存放最多的是哪种物品。

Input

第一行数字N,M
接下来N-1行,每行两个数字a,b,表示a与b间有一条边
再接下来M行,每行三个数字x,y,z.如题

Output

输出有N行
每i行的数字表示第i个点存放最多的物品是哪一种,如果有多种物品的数量一样,输出编号最小的。如果某个点没有物品则输出0

题解:看到题直接的想法就是树套树,但是由于可以离线,我们可以直接差分。

具体地,我们对于每个点都维护一棵权值线段树,然后将标记差分,最后将每个节点的线段树与父亲节点的线段树合并即可。

建议:在一开始的时候就为每个点创建一个rt节点。

#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn=100010;
int inf=1000000000;
int n,m,cnt,tot;
int to[maxn<<1],next[maxn<<1],head[maxn],fa[19][maxn],dep[maxn],rt[maxn],p[maxn],ref[maxn];
int v[maxn*50],s[maxn*50],ls[maxn*50],rs[maxn*50];
struct node
{
int a,b,c;
}q[maxn];
bool cmp(node a,node b)
{
return a.c<b.c;
}
int rd()
{
int ret=0; char gc=getchar();
while(gc<'0'||gc>'9') gc=getchar();
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret;
}
void add(int a,int b)
{
to[++cnt]=b,next[cnt]=head[a],head[a]=cnt;
}
void dfs(int x)
{
p[++p[0]]=x;
for(int i=head[x];i;i=next[i])
if(to[i]!=fa[0][x]) fa[0][to[i]]=x,dep[to[i]]=dep[x]+1,dfs(to[i]);
}
int lca(int a,int b)
{
if(dep[a]<dep[b]) swap(a,b);
for(int i=18;i>=0;i--) if(dep[fa[i][a]]>=dep[b]) a=fa[i][a];
if(a==b) return a;
for(int i=18;i>=0;i--) if(fa[i][a]!=fa[i][b]) a=fa[i][a],b=fa[i][b];
return fa[0][a];
}
void pushup(int x)
{
v[x]=max(v[ls[x]],v[rs[x]]);
s[x]=(v[ls[x]]>=v[rs[x]])?s[ls[x]]:s[rs[x]];
}
void insert(int &x,int a,int b,int l,int r)
{
if(!x) x=++tot;
if(l==r)
{
v[x]+=b,s[x]=ref[l];
return ;
}
int mid=l+r>>1;
if(a<=mid) insert(ls[x],a,b,l,mid);
else insert(rs[x],a,b,mid+1,r);
pushup(x);
}
void merge(int &a,int b,int l,int r)
{
if(!b) return ;
if(!a)
{
a=b;
return ;
}
if(l==r)
{
v[a]+=v[b];
return ;
}
int mid=l+r>>1;
merge(ls[a],ls[b],l,mid),merge(rs[a],rs[b],mid+1,r);
pushup(a);
}
int main()
{
int i,j,a,b,c,d;
n=rd(),m=rd();
for(i=1;i<=n;i++) rt[i]=++tot;
for(i=1;i<n;i++) a=rd(),b=rd(),add(a,b),add(b,a);
dep[1]=1,dfs(1);
for(j=1;(1<<j)<=n;j++) for(i=1;i<=n;i++) fa[j][i]=fa[j-1][fa[j-1][i]];
for(i=1;i<=m;i++) q[i].a=rd(),q[i].b=rd(),q[i].c=rd();
sort(q+1,q+m+1,cmp);
for(d=0,i=1;i<=m;i++)
{
a=q[i].a,b=q[i].b,c=lca(a,b);
if(q[i].c>q[i-1].c) ref[++d]=q[i].c;
insert(rt[a],d,1,0,m),insert(rt[b],d,1,0,m),insert(rt[c],d,-1,0,m);
if(c!=1) insert(rt[fa[0][c]],d,-1,0,m);
}
for(i=n;i>1;i--) merge(rt[fa[0][p[i]]],rt[p[i]],0,m);
for(i=1;i<=n;i++) printf("%d\n",s[rt[i]]);
return 0;
}

【BZOJ3307】雨天的尾巴 线段树合并的更多相关文章

  1. BZOJ3307雨天的尾巴——线段树合并

    题目描述 N个点,形成一个树状结构.有M次发放,每次选择两个点x,y对于x到y的路径上(含x,y)每个点发一袋Z类型的物品.完成所有发放后,每个点存放最多的是哪种物品. 输入 第一行数字N,M接下来N ...

  2. [Vani有约会]雨天的尾巴 线段树合并

    [Vani有约会]雨天的尾巴 LG传送门 线段树合并入门好题. 先别急着上线段树合并,考虑一下这题的暴力.一看就是树上差分,对于每一个节点统计每种救济粮的数量,再一遍dfs把差分的结果统计成答案.如果 ...

  3. P4556 雨天的尾巴 线段树合并

    使用线段树合并,每个节点维护一棵权值线段树,下标为救济粮种类,区间维护数量最多的救济粮编号(下标).所以每个节点答案即为\(tre[rot[x]]\). 然后运用树上点的差分思想,对于分发路径\(u, ...

  4. bzoj 3307: 雨天的尾巴 线段树合并

    题目大意: N个点,形成一个树状结构.有M次发放,每次选择两个点x,y对于x到y的路径上(含x,y)每个点发一袋Z类型的物品.问完成所有发放后,每个点存放最多的是哪种物品. 题解: 首先我们为每一个节 ...

  5. [BZOJ3307] 雨天的尾巴-----------------线段树进阶

    虽然是个板子,但用到了差分思想. Description N个点,形成一个树状结构.有M次发放,每次选择两个点x,y对于x到y的路径上(含x,y)每个点发一袋Z类型的物品.完成所有发放后,每个点存放最 ...

  6. 洛谷P4556 [Vani有约会]雨天的尾巴(线段树合并)

    题目背景 深绘里一直很讨厌雨天. 灼热的天气穿透了前半个夏天,后来一场大雨和随之而来的洪水,浇灭了一切. 虽然深绘里家乡的小村落对洪水有着顽固的抵抗力,但也倒了几座老房子,几棵老树被连根拔起,以及田地 ...

  7. 洛谷P4556 雨天的尾巴 线段树

    正解:线段树合并 解题报告: 传送门! 考虑对树上的每个节点开一棵权值线段树,动态开点,记录一个max(num,id)(这儿的id,define了一下,,,指的是从小到大排QAQ 然后修改操作可以考虑 ...

  8. [BZOJ3307] 雨天的尾巴(树上差分+线段树合并)

    [BZOJ3307] 雨天的尾巴(树上差分+线段树合并) 题面 给出一棵N个点的树,M次操作在链上加上某一种类别的物品,完成所有操作后,要求询问每个点上最多物品的类型. N, M≤100000 分析 ...

  9. 雨天的尾巴(bzoj3307)(线段树合并+树上差分)

    \(N\)个点,形成一个树状结构.有\(M\)次发放,每次选择两个点\(x,y\) 对于\(x\)到\(y\)的路径上(含\(x,y\))每个点发一袋\(Z\)类型的物品.完成 所有发放后,每个点存放 ...

随机推荐

  1. UVA 10131 Is Bigger Smarter?(DP最长上升子序列)

    Description   Question 1: Is Bigger Smarter? The Problem Some people think that the bigger an elepha ...

  2. 阶乘-递归-java

    public class Main { public static void main(String[] args) { for (int i=0;i<11;i++){ System.out.p ...

  3. 【CF314C】Sereja and Subsequences(DP,树状数组)

    题意:给定一个N个数的数列,求所有不同不下降子序列的乘积之和,其中不同指的是组成它的数字和长度不完全相同 n (1 ≤ n ≤ 10^5) a[i]<=10^6 思路:考虑DP.设DP[a[i] ...

  4. 【CF733F】Drivers Dissatisfaction(最小瓶颈生成树,倍增)

    题意:给出一个图,每条边有权值和花费c,每次花费c能使的权值-1.给出一个预算,求减完权值后的一个最小生成树. 思路:感谢CC大神 有这样一个结论:最佳方案里必定存在一种,预算全部花费全部分配在一条边 ...

  5. excel 表格lookup 的操作

    这个实现语句如下,(写在2行然后向下拖动)(2007或以上版本): = IF(,ISBLANK($H2),$G2="), "", IF("), IF($H2&g ...

  6. Python语言 介绍

    一.python介绍python的创始人为吉多·范罗苏姆(Guido van Rossum).1989年的圣诞节期间,吉多·范罗苏姆为了在阿姆斯特丹打发时间,决心开发一个新的脚本解释程序,作为ABC语 ...

  7. Presto查询引擎简单分析

    Hive查询流程分析 各个组件的作用 UI(user interface)(用户接口):提交数据操作的窗口Driver(引擎):负责接收数据操作,实现了会话句柄,并提供基于JDBC / ODBC的ex ...

  8. k8s之nginx-ingress、 Daemonset实现生产案例

    上一篇中用node ip + 非80端口,访问k8s集群内部的服务.实际生产中更希望用node ip + 80端口的方式,访问k8s集群内的服务. # 修改mandatory.yaml中创建控制器部分 ...

  9. GDKOI賽前總結

    @(賽前總結)[GDKOI2017] 提一些比賽時要注意的事項: 賽前先把讀入優化/輸出優化的模板調試好, 加入缺省源中. 注意不要出錯, 輸出為0或者負數的情況要特盤; 讀入輸出文件名不要搞錯; 由 ...

  10. 黑科技:CSS定制多行省略

    转载请注明出处:http://hai.li/2017/03/08/css-multiline-overflow-ellipsis.html 什么是多行省略? 当字数多到一定程度就显示省略号点点点.最初 ...