【BZOJ4383】[POI2015]Pustynia 线段树优化建图
【BZOJ4383】[POI2015]Pustynia
Description
给定一个长度为n的正整数序列a,每个数都在1到10^9范围内,告诉你其中s个数,并给出m条信息,每条信息包含三个数l,r,k以及接下来k个正整数,表示a[l],a[l+1],...,a[r-1],a[r]里这k个数中的任意一个都比任意一个剩下的r-l+1-k个数大(严格大于,即没有等号)。
请任意构造出一组满足条件的方案,或者判断无解。
Input
第一行包含三个正整数n,s,m(1<=s<=n<=100000,1<=m<=200000)。
接下来s行,每行包含两个正整数p[i],d[i](1<=p[i]<=n,1<=d[i]<=10^9),表示已知a[p[i]]=d[i],保证p[i]递增。
接下来m行,每行一开始为三个正整数l[i],r[i],k[i](1<=l[i]<r[i]<=n,1<=k[i]<=r[i]-l[i]),接下来k[i]个正整数x[1],x[2],...,x[k[i]](l[i]<=x[1]<x[2]<...<x[k[i]]<=r[i]),表示这k[i]个数中的任意一个都比任意一个剩下的r[i]-l[i]+1-k[i]个数大。Σk <= 300,000
Output
若无解,则输出NIE。
否则第一行输出TAK,第二行输出n个正整数,依次输出序列a中每个数。
Sample Input
2 7
5 3
1 4 2 2 3
4 5 1 4
Sample Output
6 7 1000000000 6 3
题解:这种类型的题还真是熟能生巧啊~
我们令一条边权为1的有向边(a,b)表示Va<Vb,边权为0的有向边表示Va<=Vb。然后对于题中给出的限制条件:[l,r]中的{a1,a2,..ak}比其他数都大,我们可以从一个新建的节点u向a1,a2,...ak连边,从剩余的节点向u连边。但是剩余的节点可能很多,我们可以将它们视为k+1个区间,用线段树优化建图。
连完边后跑一边拓扑排序就知道有没有环了,在拓扑排序的同时顺便就能求出可行方案了。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <queue>
#define lson (x<<1)
#define rson (x<<1|1)
using namespace std;
const int maxn=1000010;
int n,N,m,S,cnt,now;
int to[3000000],next[3000000],val[3000000],head[maxn],v[maxn],s[maxn],p[maxn],d[maxn];
queue<int> q;
void add(int a,int b,int c)
{
to[cnt]=b,val[cnt]=c,next[cnt]=head[a],head[a]=cnt++;
//printf("*%d %d %d\n",a,b,c);
}
void build(int l,int r,int x)
{
if(l==r)
{
now=max(now,x+n),v[x+n]=v[l],add(l,x+n,0);
return ;
}
int mid=l+r>>1;
add(lson+n,x+n,0),add(rson+n,x+n,0);
build(l,mid,lson),build(mid+1,r,rson);
}
void updata(int l,int r,int x,int a,int b)
{
if(a>b) return ;
if(a<=l&&r<=b)
{
add(x+n,now,0);
return ;
}
int mid=l+r>>1;
if(a<=mid) updata(l,mid,lson,a,b);
if(b>mid) updata(mid+1,r,rson,a,b);
}
int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-')f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
int main()
{
//freopen("bz4383.in","r",stdin);
//freopen("bz4383.out","w",stdout);
n=rd(),S=rd(),m=rd();
int i,j,u,a,b,c;
memset(head,-1,sizeof(head));
for(i=1;i<=S;i++) a=rd(),b=rd(),v[a]=b;
build(1,n,1);
for(i=1;i<=m;i++)
{
now++,a=rd(),b=rd(),c=rd();
p[0]=a-1,p[c+1]=b+1;
for(j=1;j<=c;j++) p[j]=rd(),add(now,p[j],1);
for(j=1;j<=c+1;j++) updata(1,n,1,p[j-1]+1,p[j]-1);
}
for(i=1;i<=now;i++) for(j=head[i];j!=-1;j=next[j]) d[to[j]]++;
for(i=1;i<=now;i++) if(!d[i]) q.push(i);
while(!q.empty())
{
u=q.front(),q.pop();
if(v[u])
{
if(s[u]<=v[u]) s[u]=v[u];
else
{
printf("NIE");
return 0;
}
}
else if(u<=n) s[u]=max(s[u],1);
if(s[u]>1000000000)
{
printf("NIE");
return 0;
}
for(i=head[u];i!=-1;i=next[i])
{
s[to[i]]=max(s[to[i]],s[u]+val[i]),d[to[i]]--;
if(!d[to[i]]) q.push(to[i]);
}
}
for(i=1;i<=now;i++) if(d[i])
{
printf("NIE");
return 0;
}
printf("TAK\n");
for(i=1;i<n;i++) printf("%d ",s[i]);
printf("%d",s[n]);
return 0;
}
【BZOJ4383】[POI2015]Pustynia 线段树优化建图的更多相关文章
- bzoj4383 [POI2015]Pustynia 拓扑排序+差分约束+线段树优化建图
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4383 题解 暴力的做法显然是把所有的条件拆分以后暴力建一条有向边表示小于关系. 因为不存在零环 ...
- AtCoder Regular Contest 069 F Flags 二分,2-sat,线段树优化建图
AtCoder Regular Contest 069 F Flags 二分,2-sat,线段树优化建图 链接 AtCoder 大意 在数轴上放上n个点,点i可能的位置有\(x_i\)或者\(y_i\ ...
- loj#2255. 「SNOI2017」炸弹 线段树优化建图,拓扑,缩点
loj#2255. 「SNOI2017」炸弹 线段树优化建图,拓扑,缩点 链接 loj 思路 用交错关系建出图来,发现可以直接缩点,拓扑统计. 完了吗,不,瓶颈在于边数太多了,线段树优化建图. 细节 ...
- bzoj3073: [Pa2011]Journeys 线段树优化建图
bzoj3073: [Pa2011]Journeys 链接 BZOJ 思路 区间和区间连边.如何线段树优化建图. 和单点连区间类似的,我们新建一个点,区间->新点->区间. 又转化成了单点 ...
- BZOJ 3073: [Pa2011]Journeys Dijkstra+线段树优化建图
复习一下线段树优化建图:1.两颗线段树的叶子节点的编号是公用的. 2.每次连边是要建两个虚拟节点 $p1,p2$ 并在 $p1,p2$ 之间连边. #include <bits/stdc++.h ...
- 【bzoj4383】[POI2015]Pustynia 线段树优化建图+差分约束系统+拓扑排序
题目描述 给定一个长度为n的正整数序列a,每个数都在1到10^9范围内,告诉你其中s个数,并给出m条信息,每条信息包含三个数l,r,k以及接下来k个正整数,表示a[l],a[l+1],...,a[r- ...
- BZOJ 4276 [ONTAK2015]Bajtman i Okrągły Robin 费用流+线段树优化建图
Description 有n个强盗,其中第i个强盗会在[a[i],a[i]+1],[a[i]+1,a[i]+2],...,[b[i]-1,b[i]]这么多段长度为1时间中选出一个时间进行抢劫,并计划抢 ...
- codeforces 787D - Legacy 线段树优化建图,最短路
题意: 有n个点,q个询问, 每次询问有一种操作. 操作1:u→[l,r](即u到l,l+1,l+2,...,r距离均为w)的距离为w: 操作2:[l,r]→u的距离为w 操作3:u到v的距离为w 最 ...
- Codeforces 1045A Last chance 网络流,线段树,线段树优化建图
原文链接https://www.cnblogs.com/zhouzhendong/p/CF1045A.html 题目传送们 - CF1045A 题意 你有 $n$ 个炮,有 $m$ 个敌人,敌人排成一 ...
随机推荐
- 牛客网 牛客小白月赛1 F.三视图
F.三视图 链接:https://www.nowcoder.com/acm/contest/85/F来源:牛客网 这个题自己想一下三维的,正视图和左视图中y轴为行数,x轴和z轴是列数,因为 ...
- jvm 简单描述
java零基础入门-面向对象篇(一) 基础类型和引用类型 友情提示:本章开始可能会有部分较深入的内容,不说又不行,说了又很难解释清楚,因为里面的技术细节实在太多太复杂,所以我会屏蔽部分技术细节,只展示 ...
- 某考试T1 game
题目背景 无 题目描述 Alice 和 Bob 在一个圆环上玩游戏.圆环上有 n 个位置,按照顺时针顺序 依次标号为 1 到 n.Alice 和 Bob 分别有一个数字集合,集合中都是在 [1, n− ...
- Docker 存储引擎
可插拔存储引擎架构 这种可插拔式的存储架构.可以让你很灵活的去选择适合自己环境的存储引擎. 每个存储引擎都是以Linux 文件系统为基础的.此外,每个存储引擎都以自己的方式自由的管理image ...
- pt-query-digest 实践(转)
mysql slowlog 使用与介绍 slow_query_log =1-----是否打开 slow_query_log_file = /data/mysql_data/node-1/mysql-s ...
- Spark sql读取数据库和ES数据进行处理代码
读取数据库数据和ElasticSearch数据进行连接处理 import java.util.HashMap; import java.util.List; import java.util.Map; ...
- 解释一下Windows dos中的符号
容许我放一段Windows的批处理: sc <server> [command] [service name] <option1> <option2>... < ...
- 手机话费充值和手机流量充值 API
最近正好需要用到手机充值和流量充值接口,网上找到的,记录并分享下. 聚合数据上面有手机充值的接口,也有流量充值的接口:注册以后可以使用它的OpenId和AppKey. 手机话费充值的接口:https: ...
- java 中 instanceof 和 isInstance区别
两者的功能是等价的.区别: 1.instanceof 是一个操作符(类似new, ==等): 使用方法: if (ins instanceof String) { //logic } 2.isInst ...
- GitFlow工作流常用操作流程
1. 主要分支介绍 1.1 master分支 主分支,产品的功能全部实现后,最终在master分支对外发布. 1.2 develop分支 开发分支,基于master分支克隆,产品的编码工作在此分支进行 ...