本文来自网易云社区

作者:孙建良

在分布式存储系统 中说明了,在一定情况下,copyset的数量不是越多越好,在恢复时间确定的情况下,找到合适的copyset的数量可以降低数据丢失的概率。

在分布式存储系统可靠性系列文章分布式存储系统可靠性-设计模式一文中也总结道:

为了提高存储系统数据可靠性,首先在系统允许的成本范围内选择合适的副本数,再次在系统设计中我们首先优先考虑加快数据恢复时间,在此基础上减小系统的copyset数量。使得在既定的成本下达到尽可能高的可靠性。

其实在业界也已经有团队在这方面有过实践和经营总结。《Copysets: Reducing the
Frequency of Data Loss in Cloud Storage》
,这篇paper是斯坦福大学的学生在facebook HDFS集群上作实验,为了有效降低数据丢失概率,数据放置算法,从原来的Random Replicaiton更改为copyset Replication 算法,实验结果说明可以将FaceBook HDFS集群1%节点故障时的数据丢失概率从22.8%降低道0.78%

  • Motivation: 降低数据丢失概率

  • Innovation: 减少copyset数量可以降低数据丢失概率

  • Implementation: copyset Replication

  • Evaluation: 在Facebook HDFS集群1%节点故障时,22.8% to 0.78%

以下总结分析3种较为典型的副本分布策略,即 Random Replication、Randon Relication With Failure Domain、CopySet Replication,并简单分析这些策略情况下的数据丢失概率。

1 Random Replication

如上为典型的副本随机放置策略,1个大文件分为很多chunk(或称为block),chunk的大小比如64M, chunk的放置并没有什么限制,每个chunk数据的放置基本是按照随机策略进行,当然也可能会考虑容量的均衡,但是基本上是属于一种随机策略。

在R副本,节点数为N的集群中:

  • 集群放置方式(即最大copyset数量) K = C(N, R)

  • R个节点故障:C(N, R)

  • R个节点故障时,丢数据概率:Min(K, #chunk) / C(N, R) = 1

  • 如果chunk很多,概率接近于1

2 Random Replication With Failure Domain

如上这种机架感知的副本放置策略情况下,主要的设计原因为保障数据可用性,在一个机架端点或者故障情况下,还有其他机架上的数据还是可用的。如图中所述,放置策略为:

  • 一个副本放置在本节点

  • 第二个副本放置在remote Rack的 节点上

  • 第三个副本放置哎remote Rack 的另外一个节点上

  • 如果还有其他副本,其他副本随机放置

在R副本,节点数为N,故障域数量为N的集群中:

  • 集群放置方式(即最大copyset数量):K = C(Z, 2)  C(N/Z, 1)  C(N/Z, R-3)

  • R个节点故障:C(N, R)

  • R个节点故障时,丢数据概率:Min(K,#chunk) / C(N, R)

3 CopySet Replicaitions

从上面2中放置策略可以基本得出较为单一的结论:

  • 放置方式越多,数据越分散,发生R节点故障时,数据丢失概率越大。

当然并不是说放置方式越少越好,最小的方式直接组织磁盘为RAID 0 mirror 方式,但是这种情况下数据恢复时间较长,从而会进一步加大数据丢失概率。

这里先不讨论,恢复时间和数据分散 在什么样子的搭配情况下会得到最优的情况。只探讨在固定恢复时间情况下,如何有效控制数据打散程度,得到最好的可靠性。

恢复速度与scatter width成正相关,所谓scatter width:

scatter width: 一块盘上的数据所对应的副本数据会打散到其他盘上,所谓scatter,就是所有这些副本数据所对应的盘的数量。scatter width 越大,参与进行数据恢复的节点越多,恢复速度越快,所以固定恢复速度情况下,是可以算出究竟需要多大的scatter width。

scatter width 确定情况下,如何副本放置算法如何确保磁盘的scatter width?

接下来就是轮到CopySet Replication 算法出场了。

其实算法原理很节点,看下下面这张图就成,算法根据系统节点数,和副本数量,进行多个轮次的计算,每一轮次把所有节点按照副本数划分为 N/R 个copyset。每次确保其中的copyset 不与当前和之前所有轮次中已经产生的copyset相同,最后数据写入的时候,选择一个copyset 写入即可。 由于每个排列会吧S(Scatter Width)  增加R-1,所以
算法执行P = S/(R-1) 次, K(CopySet数量) = P  (N/R) = S/(R-1) (N/R)

显然相比前两种策略,CopySet Replication在保障恢复时间的基础上能够得到最佳的数据分布策略。

另外在随机放置情况下,其实如果使用小文件合并成大文件的存储策略,可以通过控制大文件的大小,从而控制每个磁盘上大文件的数量,比如100G一个文件,8T盘上的最大文件存储数量也就是8T/100G = 80个文件,显然也就是能够很好的控制一个数据盘的数据打散程度,但是相对而言CopySet Replication 更多的是一种较为通用的算法,而这种算法更多的是适用于特定构架的分布式存储系统,即小文件合并成大文件。

4 参考文献

云硬盘是网易云提供的数据持久化服务,为云服务器和容器服务提供弹性块存储设备。

网易云免费体验馆,0成本体验20+款云产品!

更多网易研发、产品、运营经验分享请访问网易云社区

相关文章:
【推荐】 试水新的Angular4 HTTP API
【推荐】 如何从“点子”落地到“执行”?—完整解析1个手游传播类mini项目的进化

分布式存储系统可靠性系列五:副本放置算法 & CopySet Replication的更多相关文章

  1. 系列五AnkhSvn

    原文:系列五AnkhSvn AnkhSvn介绍 AnkhSVN是一款在VS中管理Subversion的插件,您可以在VS中轻松的提交.更新.添加文件,而不用在命令行或资源管理器中提交.而且该插件属于开 ...

  2. java基础解析系列(五)---HashMap并发下的问题以及HashTable和CurrentHashMap的区别

    java基础解析系列(五)---HashMap并发下的问题以及HashTable和CurrentHashMap的区别 目录 java基础解析系列(一)---String.StringBuffer.St ...

  3. CSS 魔法系列:纯 CSS 绘制各种图形《系列五》

    我们的网页因为 CSS 而呈现千变万化的风格.这一看似简单的样式语言在使用中非常灵活,只要你发挥创意就能实现很多比人想象不到的效果.特别是随着 CSS3 的广泛使用,更多新奇的 CSS 作品涌现出来. ...

  4. Netty4.x中文教程系列(五)编解码器Codec

    Netty4.x中文教程系列(五)编解码器Codec 上一篇文章详细解释了ChannelHandler的相关构架设计,版本和设计逻辑变更等等. 这篇文章主要在于讲述Handler里面的Codec,也就 ...

  5. WCF编程系列(五)元数据

    WCF编程系列(五)元数据   示例一中我们使用了scvutil命令自动生成了服务的客户端代理类: svcutil http://localhost:8000/?wsdl /o:FirstServic ...

  6. JVM系列五:JVM监测&工具

    JVM系列五:JVM监测&工具[整理中]  http://www.cnblogs.com/redcreen/archive/2011/05/09/2040977.html 前几篇篇文章介绍了介 ...

  7. SQL Server 2008空间数据应用系列五:数据表中使用空间数据类型

    原文:SQL Server 2008空间数据应用系列五:数据表中使用空间数据类型 友情提示,您阅读本篇博文的先决条件如下: 1.本文示例基于Microsoft SQL Server 2008 R2调测 ...

  8. VSTO之旅系列(五):创建Outlook解决方案

    原文:VSTO之旅系列(五):创建Outlook解决方案 本专题概要 引言 Outlook对象模型 自定义Outlook窗体 小结 一.引言 在上一个专题中,为大家简单介绍了下如何创建Word解决方案 ...

  9. HDFS副本放置策略和机架感知

    副本放置策略 的副本放置策略的基本思想是: 第一block在复制和client哪里node于(假设client它不是群集的范围内,则这第一个node是随机选取的.当然系统会尝试不选择哪些太满或者太忙的 ...

随机推荐

  1. window.returnValue使用方法

    returnValue是javascript中html的window对象的属性,目的是返回窗口值,当用window.showModalDialog函数打开一个IE的模式窗口(模式窗口知道吧,就是打开后 ...

  2. redis在Windows下以后台服务一键搭建集群(多机器)

    redis在Windows下以后台服务一键搭建集群(多机器) 一.概述 此教程介绍如何在windows系统中多台机器之间布置redis集群,同时要以后台服务的模式运行.布置以脚本的形式,一键完成.多台 ...

  3. 汇编:jmp系列跳转指令总结

    助记方法: J:跳转C: 进位位置位N: 否S: 符号位置位o: 溢出位置位Z: 零标志位置位E: 等于P:奇偶位置位A: AboveB: BelowL: Less (Little的比较级)G: Gr ...

  4. 最简单的基于FFMPEG的转码程序 —— 分析

    模块:  libavcodec    - 编码解码器         libavdevice   - 输入输出设备的支持         libavfilter   - 视音频滤镜支持         ...

  5. [论文理解]Focal Loss for Dense Object Detection(Retina Net)

    Focal Loss for Dense Object Detection Intro 这又是一篇与何凯明大神有关的作品,文章主要解决了one-stage网络识别率普遍低于two-stage网络的问题 ...

  6. vue组件 $children,$refs,$parent的使用

    如果项目很大,组件很多,怎么样才能准确的.快速的寻找到我们想要的组件了?? 1)$refs 首先你的给子组件做标记.demo :<firstchild ref="one"&g ...

  7. 进入Windows之前发出警告

    实现效果: 知识运用: 通过注册表中HKLM:\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon\子键下的LegalNoticeCaption ...

  8. Videos

    Videos 时间限制: 1 Sec  内存限制: 128 MB提交: 17  解决: 7[提交] [状态] [讨论版] [命题人:admin] 题目描述 C-bacteria takes charg ...

  9. ScriptMaker

    0x00 前言 pwn脚本千篇一律,之前也是保存了一份模板,每次都用它,但还是觉得每次都复制一次各种名字还是有的累,于是就写了一份脚本生成器 0x01 ScriptMaker #!/usr/bin/e ...

  10. 转:Python集合(set)类型的操作

    转自:http://blog.csdn.net/business122/article/details/7541486 python的set和其他语言类似, 是一个无序不重复元素集, 基本功能包括关系 ...