本文来自网易云社区

作者:孙建良

在分布式存储系统 中说明了,在一定情况下,copyset的数量不是越多越好,在恢复时间确定的情况下,找到合适的copyset的数量可以降低数据丢失的概率。

在分布式存储系统可靠性系列文章分布式存储系统可靠性-设计模式一文中也总结道:

为了提高存储系统数据可靠性,首先在系统允许的成本范围内选择合适的副本数,再次在系统设计中我们首先优先考虑加快数据恢复时间,在此基础上减小系统的copyset数量。使得在既定的成本下达到尽可能高的可靠性。

其实在业界也已经有团队在这方面有过实践和经营总结。《Copysets: Reducing the
Frequency of Data Loss in Cloud Storage》
,这篇paper是斯坦福大学的学生在facebook HDFS集群上作实验,为了有效降低数据丢失概率,数据放置算法,从原来的Random Replicaiton更改为copyset Replication 算法,实验结果说明可以将FaceBook HDFS集群1%节点故障时的数据丢失概率从22.8%降低道0.78%

  • Motivation: 降低数据丢失概率

  • Innovation: 减少copyset数量可以降低数据丢失概率

  • Implementation: copyset Replication

  • Evaluation: 在Facebook HDFS集群1%节点故障时,22.8% to 0.78%

以下总结分析3种较为典型的副本分布策略,即 Random Replication、Randon Relication With Failure Domain、CopySet Replication,并简单分析这些策略情况下的数据丢失概率。

1 Random Replication

如上为典型的副本随机放置策略,1个大文件分为很多chunk(或称为block),chunk的大小比如64M, chunk的放置并没有什么限制,每个chunk数据的放置基本是按照随机策略进行,当然也可能会考虑容量的均衡,但是基本上是属于一种随机策略。

在R副本,节点数为N的集群中:

  • 集群放置方式(即最大copyset数量) K = C(N, R)

  • R个节点故障:C(N, R)

  • R个节点故障时,丢数据概率:Min(K, #chunk) / C(N, R) = 1

  • 如果chunk很多,概率接近于1

2 Random Replication With Failure Domain

如上这种机架感知的副本放置策略情况下,主要的设计原因为保障数据可用性,在一个机架端点或者故障情况下,还有其他机架上的数据还是可用的。如图中所述,放置策略为:

  • 一个副本放置在本节点

  • 第二个副本放置在remote Rack的 节点上

  • 第三个副本放置哎remote Rack 的另外一个节点上

  • 如果还有其他副本,其他副本随机放置

在R副本,节点数为N,故障域数量为N的集群中:

  • 集群放置方式(即最大copyset数量):K = C(Z, 2)  C(N/Z, 1)  C(N/Z, R-3)

  • R个节点故障:C(N, R)

  • R个节点故障时,丢数据概率:Min(K,#chunk) / C(N, R)

3 CopySet Replicaitions

从上面2中放置策略可以基本得出较为单一的结论:

  • 放置方式越多,数据越分散,发生R节点故障时,数据丢失概率越大。

当然并不是说放置方式越少越好,最小的方式直接组织磁盘为RAID 0 mirror 方式,但是这种情况下数据恢复时间较长,从而会进一步加大数据丢失概率。

这里先不讨论,恢复时间和数据分散 在什么样子的搭配情况下会得到最优的情况。只探讨在固定恢复时间情况下,如何有效控制数据打散程度,得到最好的可靠性。

恢复速度与scatter width成正相关,所谓scatter width:

scatter width: 一块盘上的数据所对应的副本数据会打散到其他盘上,所谓scatter,就是所有这些副本数据所对应的盘的数量。scatter width 越大,参与进行数据恢复的节点越多,恢复速度越快,所以固定恢复速度情况下,是可以算出究竟需要多大的scatter width。

scatter width 确定情况下,如何副本放置算法如何确保磁盘的scatter width?

接下来就是轮到CopySet Replication 算法出场了。

其实算法原理很节点,看下下面这张图就成,算法根据系统节点数,和副本数量,进行多个轮次的计算,每一轮次把所有节点按照副本数划分为 N/R 个copyset。每次确保其中的copyset 不与当前和之前所有轮次中已经产生的copyset相同,最后数据写入的时候,选择一个copyset 写入即可。 由于每个排列会吧S(Scatter Width)  增加R-1,所以
算法执行P = S/(R-1) 次, K(CopySet数量) = P  (N/R) = S/(R-1) (N/R)

显然相比前两种策略,CopySet Replication在保障恢复时间的基础上能够得到最佳的数据分布策略。

另外在随机放置情况下,其实如果使用小文件合并成大文件的存储策略,可以通过控制大文件的大小,从而控制每个磁盘上大文件的数量,比如100G一个文件,8T盘上的最大文件存储数量也就是8T/100G = 80个文件,显然也就是能够很好的控制一个数据盘的数据打散程度,但是相对而言CopySet Replication 更多的是一种较为通用的算法,而这种算法更多的是适用于特定构架的分布式存储系统,即小文件合并成大文件。

4 参考文献

云硬盘是网易云提供的数据持久化服务,为云服务器和容器服务提供弹性块存储设备。

网易云免费体验馆,0成本体验20+款云产品!

更多网易研发、产品、运营经验分享请访问网易云社区

相关文章:
【推荐】 试水新的Angular4 HTTP API
【推荐】 如何从“点子”落地到“执行”?—完整解析1个手游传播类mini项目的进化

分布式存储系统可靠性系列五:副本放置算法 & CopySet Replication的更多相关文章

  1. 系列五AnkhSvn

    原文:系列五AnkhSvn AnkhSvn介绍 AnkhSVN是一款在VS中管理Subversion的插件,您可以在VS中轻松的提交.更新.添加文件,而不用在命令行或资源管理器中提交.而且该插件属于开 ...

  2. java基础解析系列(五)---HashMap并发下的问题以及HashTable和CurrentHashMap的区别

    java基础解析系列(五)---HashMap并发下的问题以及HashTable和CurrentHashMap的区别 目录 java基础解析系列(一)---String.StringBuffer.St ...

  3. CSS 魔法系列:纯 CSS 绘制各种图形《系列五》

    我们的网页因为 CSS 而呈现千变万化的风格.这一看似简单的样式语言在使用中非常灵活,只要你发挥创意就能实现很多比人想象不到的效果.特别是随着 CSS3 的广泛使用,更多新奇的 CSS 作品涌现出来. ...

  4. Netty4.x中文教程系列(五)编解码器Codec

    Netty4.x中文教程系列(五)编解码器Codec 上一篇文章详细解释了ChannelHandler的相关构架设计,版本和设计逻辑变更等等. 这篇文章主要在于讲述Handler里面的Codec,也就 ...

  5. WCF编程系列(五)元数据

    WCF编程系列(五)元数据   示例一中我们使用了scvutil命令自动生成了服务的客户端代理类: svcutil http://localhost:8000/?wsdl /o:FirstServic ...

  6. JVM系列五:JVM监测&工具

    JVM系列五:JVM监测&工具[整理中]  http://www.cnblogs.com/redcreen/archive/2011/05/09/2040977.html 前几篇篇文章介绍了介 ...

  7. SQL Server 2008空间数据应用系列五:数据表中使用空间数据类型

    原文:SQL Server 2008空间数据应用系列五:数据表中使用空间数据类型 友情提示,您阅读本篇博文的先决条件如下: 1.本文示例基于Microsoft SQL Server 2008 R2调测 ...

  8. VSTO之旅系列(五):创建Outlook解决方案

    原文:VSTO之旅系列(五):创建Outlook解决方案 本专题概要 引言 Outlook对象模型 自定义Outlook窗体 小结 一.引言 在上一个专题中,为大家简单介绍了下如何创建Word解决方案 ...

  9. HDFS副本放置策略和机架感知

    副本放置策略 的副本放置策略的基本思想是: 第一block在复制和client哪里node于(假设client它不是群集的范围内,则这第一个node是随机选取的.当然系统会尝试不选择哪些太满或者太忙的 ...

随机推荐

  1. JS转换日期格式

    // 对Date的扩展,将 Date 转化为指定格式的String // 月(M).日(d).小时(h).分(m).秒(s).季度(q) 可以用 1-2 个占位符, // 年(y)可以用 1-4 个占 ...

  2. 利用python进行简单的图片处理

    python的 PIL模块是专门用来处理图片的模块,其功能可以说是非常强大了. 演示环境:win7 操作系统 安装python2.7以及指定的对应PIL模块 我这里有一个现成的PIL模块.本文的大部分 ...

  3. Mono for Android 设计器错误:Disconnected from layout renderer

        今早打开vs2012 android 项目的时候出现如下错误提示:     查了半天,终于在官方网站得到答案.(http://forums.xamarin.com/discussion/143 ...

  4. 【extjs6学习笔记】1.15 初始: 关于build

    调试版本 sencha app build --development 发布版本 sencha app build 说明: 使用第三方库时,目前sencha可能还有bug,会更改第三方库内容,所以发布 ...

  5. linux常用工具

    命令 功能应用 用法举例 free 查看内存使用情况,包括物理内存和虚拟内存 free -h或free -m vmstat 对系统的整体情况进行统计,包括内核进程.虚拟内存.磁盘.陷阱和 CPU 活动 ...

  6. idea字体模糊

    用jdk1.8的jre替换idea的jre64,但是记得在lib里加上jdk的lib中的tools.jar. 如图: 然后 将原来jre64的TOOLS.jar拷贝到替换后的jre的lib目录下,重启 ...

  7. [转载]AngularJS入门教程04:双向绑定

    在这一步你会增加一个让用户控制手机列表显示顺序的特性.动态排序可以这样实现,添加一个新的模型属性,把它和迭代器集成起来,然后让数据绑定完成剩下的事情. 请重置工作目录: git checkout -f ...

  8. 2018.5.14 XML文档类型定义----DTD

    1.DTD概述 一个完全意义上的XML文件不仅仅是Well-fromed(格式良好的),而且还应该是使用了一些自定义的标记ValidatingXMl(有效的)文档也就是说他必须遵守文档类型的定义中已声 ...

  9. python_72_json序列化2

    #序列化(json是最正规的) import json info={ 'name':'Xue Jingjie', 'age':22 } f=open('第72.text','w') print(jso ...

  10. 【luogu P1783 海滩防御】 题解

    题目链接:https://www.luogu.org/problemnew/show/P1783 先把题目改造一下:题目所求是要一条能从0列到n列的路径,使其路径上的最大边长一半最小. 为什么是一半呢 ...