FFT、NTT学习笔记
参考资料
上面是FFT的,学完了就来看NTT吧
例题:luogu3803
fft优化后模板
#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std;
int n, m, lim=1, rev[2100005];
const double PI=acos(-1.0);
struct Complex{
double x, y;
Complex(double xx=0.0, double yy=0.0){
x = xx;
y = yy;
}
Complex operator+(const Complex &u)const{
return Complex(x+u.x, y+u.y);
}
Complex operator-(const Complex &u)const{
return Complex(x-u.x, y-u.y);
}
Complex operator*(const Complex &u)const{
return Complex(x*u.x-y*u.y, x*u.y+y*u.x);
}
}a[2100005], b[2100005];
template<typename T> void rn(T &x){
x = 0;
char ch=getchar();
while(ch<'0' || ch>'9') ch = getchar();
while(ch>='0' && ch<='9'){
x = x * 10 + ch - '0';
ch = getchar();
}
}
void fft(Complex a[], int opt){
for(int i=0; i<lim; i++)
if(i<rev[i])
swap(a[i], a[rev[i]]);
for(int i=2; i<=lim; i<<=1){
int tmp=i>>1;
Complex wn=Complex(cos(PI*2.0/i), opt*sin(PI*2.0/i));
for(int j=0; j<lim; j+=i){
Complex w=Complex(1.0, 0.0);
for(int k=0; k<tmp; k++){
Complex tmp1=a[j+k], tmp2=w*a[j+k+tmp];
a[j+k] = tmp1 + tmp2;
a[j+k+tmp] = tmp1 - tmp2;
w = w * wn;
}
}
}
if(opt==-1)
for(int i=0; i<lim; i++)
a[i].x /= lim;
}
int main(){
cin>>n>>m;
for(int i=0; i<=n; i++) rn(a[i].x);
for(int i=0; i<=m; i++) rn(b[i].x);
int tmpcnt=0;
while(lim<=n+m) lim <<= 1, tmpcnt++;
for(int i=0; i<lim; i++)
rev[i] = (rev[i>>1]>>1) | ((i&1)<<(tmpcnt-1));
fft(a, 1);
fft(b, 1);
for(int i=0; i<lim; i++)
a[i] = a[i] * b[i];
fft(a, -1);
for(int i=0; i<=n+m; i++)
printf("%d ", (int)(a[i].x+0.5));
printf("\n");
return 0;
}
NTT
#include <iostream>
#include <cstdio>
using namespace std;
typedef long long ll;
int n, m, a[2100005], b[2100005], lim=1, limcnt, rev[2100005];
const int mod=998244353, gg=3, gi=332748118;
void rn(int &x){
char ch=getchar();
x = 0;
while(ch<'0' || ch>'9') ch = getchar();
while(ch>='0' && ch<='9'){
x = x * 10 + ch - '0';
ch = getchar();
}
}
int ksm(int a, int b){
int re=1;
while(b){
if(b&1) re = (ll)re * a % mod;
a = (ll)a * a % mod;
b >>= 1;
}
return re;
}
void ntt(int a[], int opt){
for(int i=0; i<lim; i++)
if(i<rev[i])
swap(a[i], a[rev[i]]);
for(int i=2; i<=lim; i<<=1){
int tmp=i>>1, wn=ksm(opt==1?gg:gi, (mod-1)/i);
for(int j=0; j<lim; j+=i){
int w=1;
for(int k=0; k<tmp; k++){
int tmp1=a[j+k], tmp2=(ll)w*a[j+k+tmp]%mod;
a[j+k] = (tmp1 + tmp2) % mod;
a[j+k+tmp] = (tmp1 - tmp2 + mod) % mod;
w = (ll)w * wn % mod;
}
}
}
if(opt==-1){
int inv=ksm(lim, mod-2);
for(int i=0; i<lim; i++)
a[i] = (ll)a[i] * inv % mod;
}
}
int main(){
cin>>n>>m;
for(int i=0; i<=n; i++) rn(a[i]);
for(int i=0; i<=m; i++) rn(b[i]);
while(lim<=n+m) lim <<= 1, limcnt++;
for(int i=0; i<lim; i++)
rev[i] = (rev[i>>1]>>1) | ((i&1)<<(limcnt-1));
ntt(a, 1);
ntt(b, 1);
for(int i=0; i<lim; i++)
a[i] = (ll)a[i] * b[i] % mod;
ntt(a, -1);
for(int i=0; i<=n+m; i++)
printf("%d ", a[i]);
printf("\n");
return 0;
}
递归版裸fft没什么优化
#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std;
int n, m;
const double PI=acos(-1.0);
struct Complex{
double x, y;
Complex(double xx=0.0, double yy=0.0){
x = xx;
y = yy;
}
Complex operator+(const Complex &u)const{
return Complex(x+u.x, y+u.y);
}
Complex operator-(const Complex &u)const{
return Complex(x-u.x, y-u.y);
}
Complex operator*(const Complex &u)const{
return Complex(x*u.x-y*u.y, x*u.y+y*u.x);
}
}a[4000005], b[4000005], buf[4000005];
void fft(Complex a[], int lim, int opt){
if(lim==1) return ;
int tmp=lim/2;
for(int i=0; i<tmp; i++){
buf[i] = a[2*i];
buf[i+tmp] = a[2*i+1];
}
for(int i=0; i<lim; i++)
a[i] = buf[i];
fft(a, tmp, opt);
fft(a+tmp, tmp, opt);
Complex wn=Complex(cos(PI*2.0/lim), opt*sin(PI*2.0/lim)), w=Complex(1.0, 0.0);
for(int i=0; i<tmp; i++){
buf[i] = a[i] + w * a[i+tmp];
buf[i+tmp] = a[i] - w * a[i+tmp];
w = w * wn;
}
for(int i=0; i<lim; i++)
a[i] = buf[i];
}
int main(){
cin>>n>>m;
for(int i=0; i<=n; i++) scanf("%lf", &a[i].x);
for(int i=0; i<=m; i++) scanf("%lf", &b[i].x);
int lim=1;
while(lim<=n+m) lim <<= 1;
fft(a, lim, 1);
fft(b, lim, 1);
for(int i=0; i<=lim; i++)
a[i] = a[i] * b[i];
fft(a, lim, -1);
for(int i=0; i<=n+m; i++)
printf("%d ", (int)(a[i].x/lim+0.5));
printf("\n");
return 0;
}
FFT、NTT学习笔记的更多相关文章
- FFT&NTT学习笔记
具体原理就不讲了qwq,毕竟证明我也不太懂 FFT(快速傅立叶变换)&NTT(快速数论变换) FFT //求多项式乘积 //要求多项式A和多项式B的积多项式C //具体操作就是 //DFT(A ...
- FFT/NTT 学习笔记
0. 前置芝士 基础群论 复数 \(\mathbb C = \mathbb R[x^2+1]\) 则有 \(i^2+1=(-i)^2+1=0\),\(i \in \mathbb C - \mathbb ...
- FFT和NTT学习笔记_基础
FFT和NTT学习笔记 算法导论 参考(贺) http://picks.logdown.com/posts/177631-fast-fourier-transform https://blog.csd ...
- FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅲ
第三波,走起~~ FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅰ FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅱ 单位根反演 今天打多校时 1002 被卡科技了 ...
- FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅰ
众所周知,tzc 在 2019 年(12 月 31 日)就第一次开始接触多项式相关算法,可到 2021 年(1 月 1 日)才开始写这篇 blog. 感觉自己开了个大坑( 多项式 多项式乘法 好吧这个 ...
- FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅱ
因为垃圾电脑太卡了就重开了一个... 前传:多项式Ⅰ u1s1 我预感还会有Ⅲ 多项式基础操作: 例题: 26. CF438E The Child and Binary Tree 感觉这题作为第一题还 ...
- 快速傅里叶变换(FFT)学习笔记(未完待续)
目录 参考资料 FFT 吹水 例题 普通做法 更高大尚的做法 定义与一部分性质 系数表达式 点值表达式 点值相乘??? 卷积 复数 单位根 DFT IDFT 蝴蝶迭代优化 单位根求法 实现.细节与小优 ...
- NTT学习笔记
和\(FFT\)相对应的,把单位根换成了原根,把共轭复数换成了原根的逆元,最后输出的时候记得乘以原\(N\)的逆元即可. #include <bits/stdc++.h> using na ...
- NTT 学习笔记
引入 \(\tt NTT\) 和 \(\tt FFT\) 有什么不一样呢? 就是 \(\tt NTT\) 是可以用来取模的,而且没有复数带来的精度误差. 最最重要的是据说 \(\tt NTT\) 常数 ...
随机推荐
- Java中的构造函数——通过示例学习Java编程(14)
作者:CHAITANYA SINGH 来源:https://www.koofun.com//pro/kfpostsdetail?kfpostsid=25 构造函数是用来初始化新创建的对象的代码块. ...
- 在IDEA中编辑struts国际化properties文件
在IDEA中编辑struts国际化properties文件 如果手工创建的web工程,struts的i18n属性文件,可以使用native2ascii工具转换(记得命令行的第二个文件名是要保存的文件名 ...
- 《spss统计分析与行业应用案例详解》:实例九 单一样本t检验
单一样本t检验的功能与意义 spss的单一样本t检验过程是瑕设检验中最基本也是最常用的方法之一,跟所有的假没检验一样,其依剧的基木原理也是统计学中的‘小概率反证法”原理.通过单一样本t检验.我们可以实 ...
- SCCM Collection 集合获取计算机最后启动时间
获取计算机客户端最后一次启动时间,我们可以通过多种来源获取,如活动目录组 ,而不仅仅是SCCM 收集,希望对您有所帮助,下面分享PowerShell 脚本 # 1 $CollectionName = ...
- asp页面无法访问,可尝试开始SQL Server等服务
存在问题 asp页面的英文提示,翻译后为: "一个错误发生在服务器在处理URL.请联系系统管理员(管理人).如果您是系统管理员,请点击这里了解更多关于这个错误." 解决方案 请 ...
- SAP ERP classification和C4C的同步
在ERP里创建两个characteristic: 创建一个class包这两个characteristic.Class type 002意为该class能用于equipment. replicate到C ...
- 删除表中一个字段的SQL语句
1.删除没有默认值的列:alter table Test drop COLUMN BazaarType 2.删除有默认值的列:先删除约束(默认值)alter table Test DROP CONST ...
- UVALive 5031 Graph and Queries (Treap)
删除边的操作不容易实现,那么就先离线然后逆序来做. 逆序就变成了合并,用并存集判断连通,用Treap树来维护一个连通分量里的名次. Treap = Tree + Heap.用一个随机的优先级来平衡搜索 ...
- Kubernetes之pod的属性
属性名称 取值类型 是否必选 取值说明 version String Required(必) 版本号,例如v1 kind String Required pod m ...
- window.addEventListener介绍说明
原型 public override function addEventListener(type:String, listener:Function, useCapture:Boolean = fa ...