参考资料

picks

miskcoo

menci

胡小兔

unname

自为风月马前卒

上面是FFT的,学完了就来看NTT

原根

例题:luogu3803

fft优化后模板

#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std;
int n, m, lim=1, rev[2100005];
const double PI=acos(-1.0);
struct Complex{
double x, y;
Complex(double xx=0.0, double yy=0.0){
x = xx;
y = yy;
}
Complex operator+(const Complex &u)const{
return Complex(x+u.x, y+u.y);
}
Complex operator-(const Complex &u)const{
return Complex(x-u.x, y-u.y);
}
Complex operator*(const Complex &u)const{
return Complex(x*u.x-y*u.y, x*u.y+y*u.x);
}
}a[2100005], b[2100005];
template<typename T> void rn(T &x){
x = 0;
char ch=getchar();
while(ch<'0' || ch>'9') ch = getchar();
while(ch>='0' && ch<='9'){
x = x * 10 + ch - '0';
ch = getchar();
}
}
void fft(Complex a[], int opt){
for(int i=0; i<lim; i++)
if(i<rev[i])
swap(a[i], a[rev[i]]);
for(int i=2; i<=lim; i<<=1){
int tmp=i>>1;
Complex wn=Complex(cos(PI*2.0/i), opt*sin(PI*2.0/i));
for(int j=0; j<lim; j+=i){
Complex w=Complex(1.0, 0.0);
for(int k=0; k<tmp; k++){
Complex tmp1=a[j+k], tmp2=w*a[j+k+tmp];
a[j+k] = tmp1 + tmp2;
a[j+k+tmp] = tmp1 - tmp2;
w = w * wn;
}
}
}
if(opt==-1)
for(int i=0; i<lim; i++)
a[i].x /= lim;
}
int main(){
cin>>n>>m;
for(int i=0; i<=n; i++) rn(a[i].x);
for(int i=0; i<=m; i++) rn(b[i].x);
int tmpcnt=0;
while(lim<=n+m) lim <<= 1, tmpcnt++;
for(int i=0; i<lim; i++)
rev[i] = (rev[i>>1]>>1) | ((i&1)<<(tmpcnt-1));
fft(a, 1);
fft(b, 1);
for(int i=0; i<lim; i++)
a[i] = a[i] * b[i];
fft(a, -1);
for(int i=0; i<=n+m; i++)
printf("%d ", (int)(a[i].x+0.5));
printf("\n");
return 0;
}

NTT

#include <iostream>
#include <cstdio>
using namespace std;
typedef long long ll;
int n, m, a[2100005], b[2100005], lim=1, limcnt, rev[2100005];
const int mod=998244353, gg=3, gi=332748118;
void rn(int &x){
char ch=getchar();
x = 0;
while(ch<'0' || ch>'9') ch = getchar();
while(ch>='0' && ch<='9'){
x = x * 10 + ch - '0';
ch = getchar();
}
}
int ksm(int a, int b){
int re=1;
while(b){
if(b&1) re = (ll)re * a % mod;
a = (ll)a * a % mod;
b >>= 1;
}
return re;
}
void ntt(int a[], int opt){
for(int i=0; i<lim; i++)
if(i<rev[i])
swap(a[i], a[rev[i]]);
for(int i=2; i<=lim; i<<=1){
int tmp=i>>1, wn=ksm(opt==1?gg:gi, (mod-1)/i);
for(int j=0; j<lim; j+=i){
int w=1;
for(int k=0; k<tmp; k++){
int tmp1=a[j+k], tmp2=(ll)w*a[j+k+tmp]%mod;
a[j+k] = (tmp1 + tmp2) % mod;
a[j+k+tmp] = (tmp1 - tmp2 + mod) % mod;
w = (ll)w * wn % mod;
}
}
}
if(opt==-1){
int inv=ksm(lim, mod-2);
for(int i=0; i<lim; i++)
a[i] = (ll)a[i] * inv % mod;
}
}
int main(){
cin>>n>>m;
for(int i=0; i<=n; i++) rn(a[i]);
for(int i=0; i<=m; i++) rn(b[i]);
while(lim<=n+m) lim <<= 1, limcnt++;
for(int i=0; i<lim; i++)
rev[i] = (rev[i>>1]>>1) | ((i&1)<<(limcnt-1));
ntt(a, 1);
ntt(b, 1);
for(int i=0; i<lim; i++)
a[i] = (ll)a[i] * b[i] % mod;
ntt(a, -1);
for(int i=0; i<=n+m; i++)
printf("%d ", a[i]);
printf("\n");
return 0;
}

递归版裸fft没什么优化

#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std;
int n, m;
const double PI=acos(-1.0);
struct Complex{
double x, y;
Complex(double xx=0.0, double yy=0.0){
x = xx;
y = yy;
}
Complex operator+(const Complex &u)const{
return Complex(x+u.x, y+u.y);
}
Complex operator-(const Complex &u)const{
return Complex(x-u.x, y-u.y);
}
Complex operator*(const Complex &u)const{
return Complex(x*u.x-y*u.y, x*u.y+y*u.x);
}
}a[4000005], b[4000005], buf[4000005];
void fft(Complex a[], int lim, int opt){
if(lim==1) return ;
int tmp=lim/2;
for(int i=0; i<tmp; i++){
buf[i] = a[2*i];
buf[i+tmp] = a[2*i+1];
}
for(int i=0; i<lim; i++)
a[i] = buf[i];
fft(a, tmp, opt);
fft(a+tmp, tmp, opt);
Complex wn=Complex(cos(PI*2.0/lim), opt*sin(PI*2.0/lim)), w=Complex(1.0, 0.0);
for(int i=0; i<tmp; i++){
buf[i] = a[i] + w * a[i+tmp];
buf[i+tmp] = a[i] - w * a[i+tmp];
w = w * wn;
}
for(int i=0; i<lim; i++)
a[i] = buf[i];
}
int main(){
cin>>n>>m;
for(int i=0; i<=n; i++) scanf("%lf", &a[i].x);
for(int i=0; i<=m; i++) scanf("%lf", &b[i].x);
int lim=1;
while(lim<=n+m) lim <<= 1;
fft(a, lim, 1);
fft(b, lim, 1);
for(int i=0; i<=lim; i++)
a[i] = a[i] * b[i];
fft(a, lim, -1);
for(int i=0; i<=n+m; i++)
printf("%d ", (int)(a[i].x/lim+0.5));
printf("\n");
return 0;
}

FFT、NTT学习笔记的更多相关文章

  1. FFT&NTT学习笔记

    具体原理就不讲了qwq,毕竟证明我也不太懂 FFT(快速傅立叶变换)&NTT(快速数论变换) FFT //求多项式乘积 //要求多项式A和多项式B的积多项式C //具体操作就是 //DFT(A ...

  2. FFT/NTT 学习笔记

    0. 前置芝士 基础群论 复数 \(\mathbb C = \mathbb R[x^2+1]\) 则有 \(i^2+1=(-i)^2+1=0\),\(i \in \mathbb C - \mathbb ...

  3. FFT和NTT学习笔记_基础

    FFT和NTT学习笔记 算法导论 参考(贺) http://picks.logdown.com/posts/177631-fast-fourier-transform https://blog.csd ...

  4. FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅲ

    第三波,走起~~ FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅰ FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅱ 单位根反演 今天打多校时 1002 被卡科技了 ...

  5. FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅰ

    众所周知,tzc 在 2019 年(12 月 31 日)就第一次开始接触多项式相关算法,可到 2021 年(1 月 1 日)才开始写这篇 blog. 感觉自己开了个大坑( 多项式 多项式乘法 好吧这个 ...

  6. FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅱ

    因为垃圾电脑太卡了就重开了一个... 前传:多项式Ⅰ u1s1 我预感还会有Ⅲ 多项式基础操作: 例题: 26. CF438E The Child and Binary Tree 感觉这题作为第一题还 ...

  7. 快速傅里叶变换(FFT)学习笔记(未完待续)

    目录 参考资料 FFT 吹水 例题 普通做法 更高大尚的做法 定义与一部分性质 系数表达式 点值表达式 点值相乘??? 卷积 复数 单位根 DFT IDFT 蝴蝶迭代优化 单位根求法 实现.细节与小优 ...

  8. NTT学习笔记

    和\(FFT\)相对应的,把单位根换成了原根,把共轭复数换成了原根的逆元,最后输出的时候记得乘以原\(N\)的逆元即可. #include <bits/stdc++.h> using na ...

  9. NTT 学习笔记

    引入 \(\tt NTT\) 和 \(\tt FFT\) 有什么不一样呢? 就是 \(\tt NTT\) 是可以用来取模的,而且没有复数带来的精度误差. 最最重要的是据说 \(\tt NTT\) 常数 ...

随机推荐

  1. AngularJS中最重要的核心功能

    以下是AngularJS中最重要的核心功能: 数据绑定: 模型和视图组件之间的数据自动同步. 适用范围: 这些对象参考模型.它们充当控制器和视图之间的胶水. 控制器: 这些Javascript函数绑定 ...

  2. Java中方法的继承以及父类未被子类覆盖的方法调用的问题

    在看java继承这一块的时候发现了一个问题,即父类未被子类覆盖的方法是如何调用的? 是子类拥有了父类的该方法只是没有显示表示,还是子类调用了父类的该方法. 为此做了一下验证 代码如下: public ...

  3. vue分环境打包配置不同命令

    1.安装cross-env (cross-env能跨平台地设置及使用环境变量)cnpm/npm  i  cross-env -D 2.新建模板 红色的为相关文件 3.配置各个文件 (1)config下 ...

  4. jsp之获传统方式取后台数据

    1.建立模型对象: package com.java.model; public class Student { private String name; private int age; publi ...

  5. windows 10 无法使用内置管理员账户打开应用的解决方案

    步骤 运行regedit.msc: 依次找到:HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\System\ ...

  6. 融云SDK触达用户数破20亿 王者风范双倍展现

    11月1日,融云SDK触达用户数突破20亿,业务增长速度及用户覆盖量再创即时通讯云领域新高.自去年11月10日公布SDK触达用户数破10亿以来,融云仅用了一年时间,便取得了触达用户数翻倍的成绩,迅猛的 ...

  7. MVC批量上传文件(使用uploadify)

    <script src="JS/jquery-1.8.3.js"></script> <script src="uploadify/jque ...

  8. 解除phpMyAdmin导入大型MySQL数据库文件大小限制

    phpMyAdmin 导入大型数据库文件大小限制配置… 1. 修改 php.ini 文件中下列3项的值: upload_max_filesize, memory_limit 和 post_max_si ...

  9. python_100_静态方法

    class Dog(object): def __init__(self,name): self.name=name @staticmethod#实际上跟类没什么关系了 def eat():#def ...

  10. CMDB数据库设计

    title: CMDB 数据库设计 tags: Django --- CMDB数据库设计 具体的资产 服务器表和网卡.内存.硬盘是一对多的关系,一个服务器可以有多个网卡.多个内存.多个硬盘 hostn ...