前言

上一篇文章,笔者详细讲述了View三大工作流程的第一个,Measure流程,如果对测量流程还不熟悉的读者可以参考一下上一篇文章。测量流程主要是对View树进行测量,获取每一个View的测量宽高,那么有了测量宽高,就是要进行布局流程了,布局流程相对测量流程来说简单许多。那么我们开始对layout流程进行详细的解析。

ViewGroup的布局流程

上一篇文章提到,三大流程始于ViewRootImpl#performTraversals方法,在该方法内通过调用performMeasure、performLayout、performDraw这三个方法来进行measure、layout、draw流程,那么我们就从performLayout方法开始说,我们先看它的源码:

private void performLayout(WindowManager.LayoutParams lp, int desiredWindowWidth,
int desiredWindowHeight) {
mLayoutRequested = false;
mScrollMayChange = true;
mInLayout = true; final View host = mView;
if (DEBUG_ORIENTATION || DEBUG_LAYOUT) {
Log.v(TAG, "Laying out " + host + " to (" +
host.getMeasuredWidth() + ", " + host.getMeasuredHeight() + ")");
} Trace.traceBegin(Trace.TRACE_TAG_VIEW, "layout");
try {
host.layout(0, 0, host.getMeasuredWidth(), host.getMeasuredHeight()); // 1 //省略...
} finally {
Trace.traceEnd(Trace.TRACE_TAG_VIEW);
}
mInLayout = false;
}

由上面的代码可以看出,直接调用了①号的host.layout方法,host也就是DecorView,那么对于DecorView来说,调用layout方法,就是对它自身进行布局,注意到传递的参数分别是0,0,host.getMeasuredWidth,host.getMeasuredHeight,它们分别代表了一个View的上下左右四个位置,显然,DecorView的左上位置为0,然后宽高为它的测量宽高。由于View的layout方法是final类型,子类不能重写,因此我们直接看View#layout方法即可:

public void layout(int l, int t, int r, int b) {
if ((mPrivateFlags3 & PFLAG3_MEASURE_NEEDED_BEFORE_LAYOUT) != 0) {
onMeasure(mOldWidthMeasureSpec, mOldHeightMeasureSpec);
mPrivateFlags3 &= ~PFLAG3_MEASURE_NEEDED_BEFORE_LAYOUT;
} int oldL = mLeft;
int oldT = mTop;
int oldB = mBottom;
int oldR = mRight; boolean changed = isLayoutModeOptical(mParent) ?
setOpticalFrame(l, t, r, b) : setFrame(l, t, r, b); // 1 if (changed || (mPrivateFlags & PFLAG_LAYOUT_REQUIRED) == PFLAG_LAYOUT_REQUIRED) {
onLayout(changed, l, t, r, b); // 2
mPrivateFlags &= ~PFLAG_LAYOUT_REQUIRED; ListenerInfo li = mListenerInfo;
if (li != null && li.mOnLayoutChangeListeners != null) {
ArrayList<OnLayoutChangeListener> listenersCopy =
(ArrayList<OnLayoutChangeListener>)li.mOnLayoutChangeListeners.clone();
int numListeners = listenersCopy.size();
for (int i = 0; i < numListeners; ++i) {
listenersCopy.get(i).onLayoutChange(this, l, t, r, b, oldL, oldT, oldR, oldB);
}
}
} mPrivateFlags &= ~PFLAG_FORCE_LAYOUT;
mPrivateFlags3 |= PFLAG3_IS_LAID_OUT;
}

首先看①号代码,调用了setFrame方法,并把四个位置信息传递进去,这个方法用于确定View的四个顶点的位置,即初始化mLeft,mRight,mTop,mBottom这四个值,当初始化完毕后,ViewGroup的布局流程也就完成了
那么,我们先看View#setFrame方法:

protected boolean setFrame(int left, int top, int right, int bottom) {
//省略... mLeft = left;
mTop = top;
mRight = right;
mBottom = bottom;
mRenderNode.setLeftTopRightBottom(mLeft, mTop, mRight, mBottom); //省略...
return changed;
}

可以看出,它对mLeft、mTop、mRight、mBottom这四个值进行了初始化,对于每一个View,包括ViewGroup来说,以上四个值保存了Viwe的位置信息,所以这四个值是最终宽高,也即是说,如果要得到View的位置信息,那么就应该在layout方法完成后调用getLeft()、getTop()等方法来取得最终宽高,如果是在此之前调用相应的方法,只能得到0的结果,所以一般我们是在onLayout方法中获取View的宽高信息。

在设置ViewGroup自身的位置完成后,我们看到会接着调用②号方法,即onLayout()方法,该方法在ViewGroup中调用,用于确定子View的位置,即在该方法内部,子View会调用自身的layout方法来进一步完成自身的布局流程。由于不同的布局容器的onMeasure方法均有不同的实现,因此不可能对所有布局方式都说一次,另外上一篇文章是用FrameLayout#onMeasure进行讲解的,那么现在也对FrameLayout#onLayout方法进行讲解:

@Override
protected void onLayout(boolean changed, int left, int top, int right, int bottom) { //把父容器的位置参数传递进去
layoutChildren(left, top, right, bottom, false /* no force left gravity */);
} void layoutChildren(int left, int top, int right, int bottom,
boolean forceLeftGravity) {
final int count = getChildCount(); //以下四个值会影响到子View的布局参数
//parentLeft由父容器的padding和Foreground决定
final int parentLeft = getPaddingLeftWithForeground();
//parentRight由父容器的width和padding和Foreground决定
final int parentRight = right - left - getPaddingRightWithForeground(); final int parentTop = getPaddingTopWithForeground();
final int parentBottom = bottom - top - getPaddingBottomWithForeground(); for (int i = 0; i < count; i++) {
final View child = getChildAt(i);
if (child.getVisibility() != GONE) {
final LayoutParams lp = (LayoutParams) child.getLayoutParams(); //获取子View的测量宽高
final int width = child.getMeasuredWidth();
final int height = child.getMeasuredHeight(); int childLeft;
int childTop; int gravity = lp.gravity;
if (gravity == -1) {
gravity = DEFAULT_CHILD_GRAVITY;
} final int layoutDirection = getLayoutDirection();
final int absoluteGravity = Gravity.getAbsoluteGravity(gravity, layoutDirection);
final int verticalGravity = gravity & Gravity.VERTICAL_GRAVITY_MASK; //当子View设置了水平方向的layout_gravity属性时,根据不同的属性设置不同的childLeft
//childLeft表示子View的 左上角坐标X值
switch (absoluteGravity & Gravity.HORIZONTAL_GRAVITY_MASK) { /* 水平居中,由于子View要在水平中间的位置显示,因此,要先计算出以下:
* (parentRight - parentLeft -width)/2 此时得出的是父容器减去子View宽度后的
* 剩余空间的一半,那么再加上parentLeft后,就是子View初始左上角横坐标(此时正好位于中间位置),
* 假如子View还受到margin约束,由于leftMargin使子View右偏而rightMargin使子View左偏,所以最后
* 是 +leftMargin -rightMargin .
*/
case Gravity.CENTER_HORIZONTAL:
childLeft = parentLeft + (parentRight - parentLeft - width) / 2 +
lp.leftMargin - lp.rightMargin;
break; //水平居右,子View左上角横坐标等于 parentRight 减去子View的测量宽度 减去 margin
case Gravity.RIGHT:
if (!forceLeftGravity) {
childLeft = parentRight - width - lp.rightMargin;
break;
} //如果没设置水平方向的layout_gravity,那么它默认是水平居左
//水平居左,子View的左上角横坐标等于 parentLeft 加上子View的magin值
case Gravity.LEFT:
default:
childLeft = parentLeft + lp.leftMargin;
} //当子View设置了竖直方向的layout_gravity时,根据不同的属性设置同的childTop
//childTop表示子View的 左上角坐标的Y值
//分析方法同上
switch (verticalGravity) {
case Gravity.TOP:
childTop = parentTop + lp.topMargin;
break;
case Gravity.CENTER_VERTICAL:
childTop = parentTop + (parentBottom - parentTop - height) / 2 +
lp.topMargin - lp.bottomMargin;
break;
case Gravity.BOTTOM:
childTop = parentBottom - height - lp.bottomMargin;
break;
default:
childTop = parentTop + lp.topMargin;
} //对子元素进行布局,左上角坐标为(childLeft,childTop),右下角坐标为(childLeft+width,childTop+height)
child.layout(childLeft, childTop, childLeft + width, childTop + height);
}
}
}

由源码看出,onLayout方法内部直接调用了layoutChildren方法,而layoutChildren则是具体的实现。
先梳理一下以上逻辑:首先先获取父容器的padding值,然后遍历其每一个子View,根据子View的layout_gravity属性、子View的测量宽高、父容器的padding值、来确定子View的布局参数,然后调用child.layout方法,把布局流程从父容器传递到子元素。

那么,现在就分析完了ViewGroup的布局流程,那么我们接着分析子元素的布局流程。

子View的布局流程

子View的布局流程也很简单,如果子View是一个ViewGroup,那么就会重复以上步骤,如果是一个View,那么会直接调用View#layout方法,根据以上分析,在该方法内部会设置view的四个布局参数,接着调用onLayout方法,我们看看View#onLayout方法:

protected void onLayout(boolean changed, int left, int top, int right, int bottom) {
}

这是一个空实现,主要作用是在我们的自定义View中重写该方法,实现自定义的布局逻辑。

那么到目前为止,View的布局流程就已经全部分析完了。可以看出,布局流程的逻辑相比测量流程来说,简单许多,获取一个View的测量宽高是比较复杂的,而布局流程则是根据已经获得的测量宽高进而确定一个View的四个位置参数。在下一篇文章,将会讲述最后一个流程:绘制流程。希望这篇文章给大家对View的工作流程的理解带来帮助,谢谢阅读。

更多阅读
Android View 测量流程(Measure)完全解析
Android View 绘制流程(Draw) 完全解析

Android View 布局流程(Layout)完全解析的更多相关文章

  1. Android View 绘制流程(Draw) 完全解析

    前言 前几篇文章,笔者分别讲述了DecorView,measure,layout流程等,接下来将详细分析三大工作流程的最后一个流程——绘制流程.测量流程决定了View的大小,布局流程决定了View的位 ...

  2. Android View 测量流程(Measure)完全解析

    前言 上一篇文章,笔者主要讲述了DecorView以及ViewRootImpl相关的作用,这里回顾一下上一章所说的内容:DecorView是视图的顶级View,我们添加的布局文件是它的一个子布局,而V ...

  3. Android View框架的layout机制

    概述 Android中View框架的工作机制中,主要有三个过程: 1.View树的测量(measure) Android View框架的measure机制 2.View树的布局(layout)Andr ...

  4. Android线性布局(Linear Layout)

    Android线性布局(Linear Layout) LinearLayout是一个view组(view group),其包含的所有子view都以一个方向排列,垂直或是水平方向.我们能够用androi ...

  5. Android帧布局(Frame Layout)

    Android帧布局(Frame Layout) FrameLayout是最简单的一个布局管理器.FrameLayout为每个加入其中的组件创建一个空白区域(一帧),这些组件根据layout_grav ...

  6. Android表格布局(Table Layout)

    Android表格布局(Table Layout) 先来看布局管理器之间继承关系图: 图1 可知TableLayout继承了LinearLayout,所以表格布局本质上依然是线性管理器. 表格布局采用 ...

  7. 虾扯蛋:Android View动画 Animation不完全解析

    本文结合一些周知的概念和源码片段,对View动画的工作原理进行挖掘和分析.以下不是对源码一丝不苟的分析过程,只是以搞清楚Animation的执行过程.如何被周期性调用为目标粗略分析下相关方法的执行细节 ...

  8. Android View 事件分发机制 源代码解析 (上)

    一直想写事件分发机制的文章,无论咋样,也得自己研究下事件分发的源代码.写出心得~ 首先我们先写个简单的样例来測试View的事件转发的流程~ 1.案例 为了更好的研究View的事件转发,我们自定以一个M ...

  9. Android View 的事件分发原理解析

    作为一名 Android 开发者,每天接触最多的就是 View 了.Android View 虽然不是四大组件,但其并不比四大组件的地位低.而 View 的核心知识点事件分发机制则是不少刚入门同学的拦 ...

随机推荐

  1. BZOJ 4369: [IOI2015]teams分组

    把一个人看成二维平面上的一个点,把一个K[i]看成左上角为(0,+max),右下角为(K[i],K[i])的一个矩阵,那么可以很好地描述人对于询问是否合法(我也不知道他怎么想到这东西的) 然后把一组询 ...

  2. socketserver源码剖析

    作者:人世间链接:https://www.jianshu.com/p/357e436936bf來源:简书简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处 BaseServer 和 B ...

  3. luogu3178 [HAOI2015]树上操作

    裸题 #include <iostream> #include <cstdio> using namespace std; typedef long long ll; int ...

  4. python学习--学习时间属性的应用(time / datetime )

    #!/usr/bin/python # -*- coding:utf-8 -*- # import time # myd={1:'a',2:'b'}# for key,value in dict.it ...

  5. Leetcode 464.我能赢吗

    我能赢吗 在 "100 game" 这个游戏中,两名玩家轮流选择从 1 到 10 的任意整数,累计整数和,先使得累计整数和达到 100 的玩家,即为胜者. 如果我们将游戏规则改为 ...

  6. 101 Hack 50

    101 Hack 50 闲来无事.也静不下心,打个代码压压压惊 Hard Questions by kevinsogo Vincent and Catherine are classmates who ...

  7. Educational Codeforces Round 20 A. Maximal Binary Matrix

    A. Maximal Binary Matrix time limit per test 1 second memory limit per test 256 megabytes input stan ...

  8. 【转】Unity协程(Coroutine)原理深入剖析

    Unity协程(Coroutine)原理深入剖析 By D.S.Qiu 尊重他人的劳动,支持原创,转载请注明出处:http.dsqiu.iteye.com 记得去年6月份刚开始实习的时候,当时要我写网 ...

  9. BZOJ-2049 [SDOI2008]洞穴勘测

    LCT模版题.... #include <cstdlib> #include <cstdio> #include <cstring> #include <al ...

  10. 【BJOI2014/bzoj4530】大融合

    题意 有 $n$ 个点,初始没有连边,要求支持两个动态操作: 1. 加一条边(保证之前两点不连通) 2. 查询过一条边的简单路径数量(就是两边连通块的大小的乘积) $n,Q\le 100000$ 题解 ...