四边形不等式优化DP

Lawrence

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 2220    Accepted Submission(s): 975

Problem Description
T. E. Lawrence was a controversial figure during World War I. He was a British officer who served in the Arabian theater and led a group of Arab nationals in guerilla strikes against the Ottoman Empire. His primary targets were the railroads. A highly fictionalized
version of his exploits was presented in the blockbuster movie, "Lawrence of Arabia".



You are to write a program to help Lawrence figure out how to best use his limited resources. You have some information from British Intelligence. First, the rail line is completely linear---there are no branches, no spurs. Next, British Intelligence has assigned
a Strategic Importance to each depot---an integer from 1 to 100. A depot is of no use on its own, it only has value if it is connected to other depots. The Strategic Value of the entire railroad is calculated by adding up the products of the Strategic Values
for every pair of depots that are connected, directly or indirectly, by the rail line. Consider this railroad: 






Its Strategic Value is 4*5 + 4*1 + 4*2 + 5*1 + 5*2 + 1*2 = 49.



Now, suppose that Lawrence only has enough resources for one attack. He cannot attack the depots themselves---they are too well defended. He must attack the rail line between depots, in the middle of the desert. Consider what would happen if Lawrence attacked
this rail line right in the middle: 




The Strategic Value of the remaining railroad is 4*5 + 1*2 = 22. But, suppose Lawrence attacks between the 4 and 5 depots: 




The Strategic Value of the remaining railroad is 5*1 + 5*2 + 1*2 = 17. This is Lawrence's best option.



Given a description of a railroad and the number of attacks that Lawrence can perform, figure out the smallest Strategic Value that he can achieve for that railroad. 
 
Input
There will be several data sets. Each data set will begin with a line with two integers, n and m. n is the number of depots on the railroad (1≤n≤1000), and m is the number of attacks Lawrence has resources for (0≤m<n). On the next line will be n integers, each
from 1 to 100, indicating the Strategic Value of each depot in order. End of input will be marked by a line with n=0 and m=0, which should not be processed.
 
Output
For each data set, output a single integer, indicating the smallest Strategic Value for the railroad that Lawrence can achieve with his attacks. Output each integer in its own line.
 
Sample Input
4 1
4 5 1 2
4 2
4 5 1 2
0 0
 
Sample Output
17
2
 
Source
 

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm> using namespace std; typedef long long int LL; const int maxn=1100; int n,m;
LL a[maxn],sum[maxn];
LL dp[2][maxn],cost[maxn][maxn];
int s[2][maxn]; int main()
{
while(scanf("%d%d",&n,&m)!=EOF)
{
if(n==0&&m==0) break;
for(int i=1;i<=n;i++)
{
scanf("%I64d",a+i);
sum[i]=sum[i-1]+a[i];
}
memset(cost,0,sizeof(cost));
memset(s,0,sizeof(s));
for(int i=1;i<=n;i++)
for(int j=i+1;j<=n;j++)
cost[i][j]=cost[i][j-1]+(sum[j-1]-sum[i-1])*a[j];
memset(dp,63,sizeof(dp)); for (int i = 1; i <= n; ++i)
{
dp[0][i]=cost[1][i];
s[0][i]=1;
}
int now=1,pre=0; for(int j=1;j<=m;j++)
{
s[now][n+1]=n-1;
for(int i=n;i>=j;i--)
{
for(int k=s[pre][i];k<=s[now][i+1];k++)
{
int temp=dp[pre][k]+cost[k+1][i];
if(temp<dp[now][i])
{
dp[now][i]=temp;
s[now][i]=k;
}
}
}
swap(now,pre);
} printf("%I64d\n",dp[pre][n]);
}
return 0;
}

HDOJ 2829 Lawrence的更多相关文章

  1. hdoj 2829 Lawrence 四边形不等式优化dp

    dp[i][j]表示前i个,炸j条路,并且最后一个炸在i的后面时,一到i这一段的最小价值. dp[i][j]=min(dp[i][k]+w[k+1][i]) w[i][j]表示i到j这一段的价值. # ...

  2. hdu 2829 Lawrence(斜率优化DP)

    题目链接:hdu 2829 Lawrence 题意: 在一条直线型的铁路上,每个站点有各自的权重num[i],每一段铁路(边)的权重(题目上说是战略价值什么的好像)是能经过这条边的所有站点的乘积之和. ...

  3. HDU 2829 - Lawrence - [斜率DP]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2829 T. E. Lawrence was a controversial figure during ...

  4. 【HDU】2829 Lawrence

    http://acm.hdu.edu.cn/showproblem.php?pid=2829 题意:将长度为n的序列分成p+1块,使得$\sum_{每块}\sum_{i<j} a[i]a[j]$ ...

  5. HDU 2829 Lawrence(动态规划-四边形不等式)

    Lawrence Problem Description T. E. Lawrence was a controversial figure during World War I. He was a ...

  6. hdu 2829 Lawrence(四边形不等式优化dp)

    T. E. Lawrence was a controversial figure during World War I. He was a British officer who served in ...

  7. HDU 2829 Lawrence(四边形优化DP O(n^2))

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2829 题目大意:有一段铁路有n个站,每个站可以往其他站运送粮草,现在要炸掉m条路使得粮草补给最小,粮草 ...

  8. HDU 2829 Lawrence(斜率优化DP O(n^2))

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2829 题目大意:有一段铁路有n个站,每个站可以往其他站运送粮草,现在要炸掉m条路使得粮草补给最小,粮草 ...

  9. HDU 2829 Lawrence (斜率DP)

    斜率DP 设dp[i][j]表示前i点,炸掉j条边的最小值.j<i dp[i][j]=min{dp[k][j-1]+cost[k+1][i]} 又由得出cost[1][i]=cost[1][k] ...

随机推荐

  1. 第一个Maven案例Hello Maven

    Maven目录结构          src:程序源代码         -main             -java:java代码                 -package:自定义的包   ...

  2. TortoiseGit保存用户名和密码的方法

    TortoiseGit在提交或者pull时总会提示你输入用户名密码,非常麻烦,那如何解决呢? 1. 对于TortoiseGit 1.8.1.2及其后的版本,右键选择settings ——> Gi ...

  3. [51nod 1022] 石子归并v2 [dp+四边形不等式优化]

    题面: 传送门 思路: 加强版的石子归并,现在朴素的区间dp无法解决问题了 首先我们破环成链,复制一条一样的链并粘贴到原来的链后面,变成一个2n长度的序列,在它上面dp,效率O(8n^3) 显然是过不 ...

  4. Bajtman i Okrągły Robin

    Bajtman i Okrągły Robin 题目描述 你是一个保安,你发现有n个强盗,其中第i个强盗会在[a[i],a[i]+1],[a[i]+1,a[i]+2],...,[b[i]-1,b[i] ...

  5. H5 基本标签使用 浅析 (含video标签、input表单等)

    1. 音频标签<audio> <audio src = “./music/Alone.mp3” controls autoplay loop = “3” ></audio ...

  6. 使用 swagger组件给asp.net webapi文档生成

    1.名词解释 Swagger 是一个规范和完整的框架,用于生成.描述.调用和可视化 RESTful 风格的 Web 服务.总体目标是使客户端和文件系统作为服务器以同样的速度来更新.文件的方法,参数和模 ...

  7. StringBuilder 字符串拼接扩容

    String str = a + b + c(a,b,c都是变量,非常量) 实际执行时,"+"操作是通过创建一个StringBuilder来操作的,即: StringBuilder ...

  8. Scrapy笔记:CrawSpider中rules中的使用

    scrapy.spiders.crawl.CrawlSpider类的使用 这个类比较适用于对网站爬取批量网页,相比于Spider类,CrawlSpider主要使用规则(rules)来提取链接 rule ...

  9. hdu 2824(欧拉函数)

    The Euler function Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  10. Eclipse 导入项目乱码问题

    1.编码不对 a.对某文件或某工程更改编码: 鼠标移到工程名或文件名,右键->Properties->Resource->Text file enCoding ->更改编码(G ...