四边形不等式优化DP

Lawrence

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 2220    Accepted Submission(s): 975

Problem Description
T. E. Lawrence was a controversial figure during World War I. He was a British officer who served in the Arabian theater and led a group of Arab nationals in guerilla strikes against the Ottoman Empire. His primary targets were the railroads. A highly fictionalized
version of his exploits was presented in the blockbuster movie, "Lawrence of Arabia".



You are to write a program to help Lawrence figure out how to best use his limited resources. You have some information from British Intelligence. First, the rail line is completely linear---there are no branches, no spurs. Next, British Intelligence has assigned
a Strategic Importance to each depot---an integer from 1 to 100. A depot is of no use on its own, it only has value if it is connected to other depots. The Strategic Value of the entire railroad is calculated by adding up the products of the Strategic Values
for every pair of depots that are connected, directly or indirectly, by the rail line. Consider this railroad: 






Its Strategic Value is 4*5 + 4*1 + 4*2 + 5*1 + 5*2 + 1*2 = 49.



Now, suppose that Lawrence only has enough resources for one attack. He cannot attack the depots themselves---they are too well defended. He must attack the rail line between depots, in the middle of the desert. Consider what would happen if Lawrence attacked
this rail line right in the middle: 




The Strategic Value of the remaining railroad is 4*5 + 1*2 = 22. But, suppose Lawrence attacks between the 4 and 5 depots: 




The Strategic Value of the remaining railroad is 5*1 + 5*2 + 1*2 = 17. This is Lawrence's best option.



Given a description of a railroad and the number of attacks that Lawrence can perform, figure out the smallest Strategic Value that he can achieve for that railroad. 
 
Input
There will be several data sets. Each data set will begin with a line with two integers, n and m. n is the number of depots on the railroad (1≤n≤1000), and m is the number of attacks Lawrence has resources for (0≤m<n). On the next line will be n integers, each
from 1 to 100, indicating the Strategic Value of each depot in order. End of input will be marked by a line with n=0 and m=0, which should not be processed.
 
Output
For each data set, output a single integer, indicating the smallest Strategic Value for the railroad that Lawrence can achieve with his attacks. Output each integer in its own line.
 
Sample Input
4 1
4 5 1 2
4 2
4 5 1 2
0 0
 
Sample Output
17
2
 
Source
 

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm> using namespace std; typedef long long int LL; const int maxn=1100; int n,m;
LL a[maxn],sum[maxn];
LL dp[2][maxn],cost[maxn][maxn];
int s[2][maxn]; int main()
{
while(scanf("%d%d",&n,&m)!=EOF)
{
if(n==0&&m==0) break;
for(int i=1;i<=n;i++)
{
scanf("%I64d",a+i);
sum[i]=sum[i-1]+a[i];
}
memset(cost,0,sizeof(cost));
memset(s,0,sizeof(s));
for(int i=1;i<=n;i++)
for(int j=i+1;j<=n;j++)
cost[i][j]=cost[i][j-1]+(sum[j-1]-sum[i-1])*a[j];
memset(dp,63,sizeof(dp)); for (int i = 1; i <= n; ++i)
{
dp[0][i]=cost[1][i];
s[0][i]=1;
}
int now=1,pre=0; for(int j=1;j<=m;j++)
{
s[now][n+1]=n-1;
for(int i=n;i>=j;i--)
{
for(int k=s[pre][i];k<=s[now][i+1];k++)
{
int temp=dp[pre][k]+cost[k+1][i];
if(temp<dp[now][i])
{
dp[now][i]=temp;
s[now][i]=k;
}
}
}
swap(now,pre);
} printf("%I64d\n",dp[pre][n]);
}
return 0;
}

HDOJ 2829 Lawrence的更多相关文章

  1. hdoj 2829 Lawrence 四边形不等式优化dp

    dp[i][j]表示前i个,炸j条路,并且最后一个炸在i的后面时,一到i这一段的最小价值. dp[i][j]=min(dp[i][k]+w[k+1][i]) w[i][j]表示i到j这一段的价值. # ...

  2. hdu 2829 Lawrence(斜率优化DP)

    题目链接:hdu 2829 Lawrence 题意: 在一条直线型的铁路上,每个站点有各自的权重num[i],每一段铁路(边)的权重(题目上说是战略价值什么的好像)是能经过这条边的所有站点的乘积之和. ...

  3. HDU 2829 - Lawrence - [斜率DP]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2829 T. E. Lawrence was a controversial figure during ...

  4. 【HDU】2829 Lawrence

    http://acm.hdu.edu.cn/showproblem.php?pid=2829 题意:将长度为n的序列分成p+1块,使得$\sum_{每块}\sum_{i<j} a[i]a[j]$ ...

  5. HDU 2829 Lawrence(动态规划-四边形不等式)

    Lawrence Problem Description T. E. Lawrence was a controversial figure during World War I. He was a ...

  6. hdu 2829 Lawrence(四边形不等式优化dp)

    T. E. Lawrence was a controversial figure during World War I. He was a British officer who served in ...

  7. HDU 2829 Lawrence(四边形优化DP O(n^2))

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2829 题目大意:有一段铁路有n个站,每个站可以往其他站运送粮草,现在要炸掉m条路使得粮草补给最小,粮草 ...

  8. HDU 2829 Lawrence(斜率优化DP O(n^2))

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2829 题目大意:有一段铁路有n个站,每个站可以往其他站运送粮草,现在要炸掉m条路使得粮草补给最小,粮草 ...

  9. HDU 2829 Lawrence (斜率DP)

    斜率DP 设dp[i][j]表示前i点,炸掉j条边的最小值.j<i dp[i][j]=min{dp[k][j-1]+cost[k+1][i]} 又由得出cost[1][i]=cost[1][k] ...

随机推荐

  1. vue-cli 脚手架分析

    Vue-cli 一.安装vue-cli 安装vue-cli的前提是你已经安装了npm,安装npm你可以直接下载node的安装包进行安装.你可以在命令行工具里输入npm -v  检测你是否安装了npm和 ...

  2. (Mac)centos 6.5安装 JDK+mysql

    为了把自己的网站放到外网,购买了阿里云的centos 6.5服务器,以下是安装 JDK 一.JDK安装: 方法一: 1.创建目录,命令行:(这里可以不加sudo) sudo mkdir /jdk 2. ...

  3. proteus仿真 引脚显示电平变化但不能显示波形

    proteus仿真 引脚显示电平变化但不能显示波形 原来是没有选择通道问题,proteus默认优先使用A通道才会显示波形,如果优先使用B,C,D通道,需要选择...

  4. git常用命令符

    全局配置 $ git config --global user.name "姓名" 告诉git你是谁 $ git config --global user.email " ...

  5. 深入学习MongoDB

    NoSQL(Not Only SQL)为什么使用NoSQL 对数据库高并发读写 对海量数据的高效存储与访问 对数据库的高可拓展性和高可用性 NoSQL的弱点 数据库事务一致性需求 数据库的写实时性和读 ...

  6. [AGC002D] Stamp Rally (并查集+整体二分)

    Description 给你一个n个点m个条边构成的简单无向连通图,有Q组询问,每次询问从两个点x,y走出两条路径,使这两条路径覆盖z个点,求得一种方案使得路径上经过的变的最大编号最小. Input ...

  7. Python之访问set

    dict的作用是建立一组 key 和一组 value 的映射关系,dict的key是不能重复的. 有的时候,我们只想要 dict 的 key,不关心 key 对应的 value,目的就是保证这个集合的 ...

  8. 多核cpu的特殊中断

    cpu可以向其他cpu发送中断,也可以向单独某一个cpu发送中断 每个 cpu 都有一个时钟中断源

  9. golang xorm reverse 自动生成数据库实体文件

    一.先安装好需要的东西 xorm 也可以参考官方文档 readme.md https://github.com/go-xorm/cmd 和 http://xorm.io/docs/ go get gi ...

  10. window postgresql 10.4安装

    window installer下载地址:https://www.enterprisedb.com/downloads/postgres-postgresql-downloads 其他版本官网下载地址 ...