题目链接:https://vjudge.net/problem/HDU-5015

233 Matrix

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 2805    Accepted Submission(s): 1611

Problem Description
In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233333 ... in the same meaning. And here is the question: Suppose we have a matrix called 233 matrix. In the first line, it would be 233, 2333, 23333... (it means a0,1 = 233,a0,2 = 2333,a0,3 = 23333...) Besides, in 233 matrix, we got ai,j = ai-1,j +ai,j-1( i,j ≠ 0). Now you have known a1,0,a2,0,...,an,0, could you tell me an,m in the 233 matrix?
 
Input
There are multiple test cases. Please process till EOF.

For each case, the first line contains two postive integers n,m(n ≤ 10,m ≤ 109). The second line contains n integers, a1,0,a2,0,...,an,0(0 ≤ ai,0 < 231).

 
Output
For each case, output an,m mod 10000007.
 
Sample Input
1 1
1
2 2
0 0
3 7
23 47 16
 
Sample Output
234
2799
72937

Hint

 
Source
 
Recommend
hujie

题解:

假设n = 4,则矩阵中第0列元素为:

a[0][0]

a[1][0]

a[2][0]

a[3][0]

a[4][0]

根据递推,第1列为:

a[0][1] = a[0][1]

a[1][1] = a[0][1] + a[1][0]

a[2][1] = a[0][1] + a[1][0] + a[2][0]

a[3][1] = a[0][1] + a[1][0] + a[2][0] + a[3][0]

a[4][1] = a[0][1] + a[1][0] + a[2][0] + a[3][0] + a[4][0]

第m列为:

a[0][m] = a[0][m]

a[1][m] = a[0][m] + a[1][m-1]

a[2][m] = a[0][m] + a[1][m-1] + a[2][m-1]

a[3][m] = a[0][m] + a[1][m-1] + a[2][m-1] + a[3][m-1]

a[4][m] = a[0][m] + a[1][m-1] + a[2][m-1] + a[3][m-1]+ a[4][m-1]

可发现当前一列可直接由上一列递推出来,因此构造矩阵:

代码如下:

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int MOD = ;
const int MAXN = 1e6+; const int Size = ;
struct MA
{
LL mat[][];
void init()
{
for(int i = ; i<Size; i++)
for(int j = ; j<Size; j++)
mat[i][j] = (i==j);
}
}; MA mul(MA x, MA y)
{
MA ret;
memset(ret.mat, , sizeof(ret.mat));
for(int i = ; i<Size; i++)
for(int j = ; j<Size; j++)
for(int k = ; k<Size; k++)
ret.mat[i][j] += (1LL*x.mat[i][k]*y.mat[k][j])%MOD, ret.mat[i][j] %= MOD;
return ret;
} MA qpow(MA x, LL y)
{
MA s;
s.init();
while(y)
{
if(y&) s = mul(s, x);
x = mul(x, x);
y >>= ;
}
return s;
} int main()
{
LL n, m, a[];
while(scanf("%lld%lld",&n,&m)!=EOF)
{ for(int i = ; i<=n; i++)
scanf("%lld", &a[i]);
a[] = ; a[n+] = ; MA s;
memset(s.mat, , sizeof(s.mat));
for(int i = ; i<=n; i++)
{
s.mat[i][] = ;
s.mat[i][n+] = ;
for(int j = ; j<=i; j++)
s.mat[i][j] = ;
}
s.mat[n+][n+] = ; s = qpow(s, m);
LL ans = ;
for(int i = ; i<=n+; i++)
ans += 1LL*a[i]*s.mat[n][i]%MOD, ans %= MOD; printf("%lld\n", ans);
}
}

HDU5015 233 Matrix —— 矩阵快速幂的更多相关文章

  1. HDU5015 233 Matrix(矩阵高速幂)

    HDU5015 233 Matrix(矩阵高速幂) 题目链接 题目大意: 给出n∗m矩阵,给出第一行a01, a02, a03 ...a0m (各自是233, 2333, 23333...), 再给定 ...

  2. 233 Matrix 矩阵快速幂

    In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233 ...

  3. HDU - 5015 233 Matrix (矩阵快速幂)

    In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233 ...

  4. 233 Matrix(矩阵快速幂+思维)

    In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233 ...

  5. HDU 5015 233 Matrix --矩阵快速幂

    题意:给出矩阵的第0行(233,2333,23333,...)和第0列a1,a2,...an(n<=10,m<=10^9),给出式子: A[i][j] = A[i-1][j] + A[i] ...

  6. fzu 1911 Construct a Matrix(矩阵快速幂+规律)

    题目链接:fzu 1911 Construct a Matrix 题目大意:给出n和m,f[i]为斐波那契数列,s[i]为斐波那契数列前i项的和.r = s[n] % m.构造一个r * r的矩阵,只 ...

  7. UVa 11149 Power of Matrix (矩阵快速幂,倍增法或构造矩阵)

    题意:求A + A^2 + A^3 + ... + A^m. 析:主要是两种方式,第一种是倍增法,把A + A^2 + A^3 + ... + A^m,拆成两部分,一部分是(E + A^(m/2))( ...

  8. UVa 11149 Power of Matrix 矩阵快速幂

    题意: 给出一个\(n \times n\)的矩阵\(A\),求\(A+A^2+A^3+ \cdots + A^k\). 分析: 这题是有\(k=0\)的情况,我们一开始先特判一下,直接输出单位矩阵\ ...

  9. Construct a Matrix (矩阵快速幂+构造)

    There is a set of matrixes that are constructed subject to the following constraints: 1. The matrix ...

随机推荐

  1. HTTP/1.1标准请求方法和状态码

    HTTP/1.1标准自从1999年制定以来至今仍然是一个应用广泛并且通行的标准 相关文档 RFC2616:Hypertext Transfer Protocol -- HTTP/1.1 在RFC658 ...

  2. AC自动机(加强版)

    题目描述 有NN个由小写字母组成的模式串以及一个文本串TT.每个模式串可能会在文本串中出现多次.你需要找出哪些模式串在文本串TT中出现的次数最多. 输入输出格式 输入格式: 输入含多组数据. 每组数据 ...

  3. Uoj #350. 新年的XOR

    前缀异或和是可以讨论的,非常naive,然后这就是个水题了23333 #include<bits/stdc++.h> #define ll long long using namespac ...

  4. Ext 上传文件

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"/> <title> ...

  5. xamarin studio 中SpinButton ComBox Splid 鼠标放上去就会自动接收焦点,然后进行数值变化

    公司做跨平台项目,用XamarinStudio 开发mac版本,语法还是C#,但是,尼玛XamarinStudio的控件就是坑爹啊. 其他的暂时不累赘,笔者画界面,一堆控件放到一个界面上,当超出屏幕时 ...

  6. 网络通讯框架MINA和XSCOCKET的简单比较

    http://www.blogjava.net/ghostdog/archive/2008/06/10/MinaVsXsocket.html实在无聊,考虑把当前应用的通讯模式由http移植为socke ...

  7. 【HDOJ 5371】 Hotaru&#39;s problem

    [HDOJ 5371] Hotaru's problem Manacher算法+穷举/set Manacher算法一好文:http://blog.csdn.net/yzl_rex/article/de ...

  8. TNS-01201: Listener cannot find executablen 错误

    近期在启动监听器的时候收到了TNS-01201: Listener cannot find executable...的错误提示.这个错误还真是一个一直没有碰到过的错误.咋一看还真不明确是怎么一回事呢 ...

  9. 横向卷轴(side-scrolling)地图的canvas实现

    标题有点小题大作了,实际上是实现一张看起来连续的运动背景图片. 效果如下:   // 实现原理: 图片1与图片2是两张首尾衔接的图片,图片1以一定速度移出canvas,图片2慢慢移进canvas,当图 ...

  10. Android组件系列----ContentProvider内容提供者【4】

    (4)单元測试类: 这里须要涉及到另外一个知识:ContentResolver内容訪问者. 要想訪问ContentProvider.则必须使用ContentResolver. 能够通过ContentR ...