ACM学习历程—HDU 5317 RGCDQ (数论)
In the next T lines, each line contains L, R which is mentioned above.
All input items are integers.
1<= T <= 1000000
2<=L < R<=1000000
See the sample for more details.
这个题目比较巧妙。
f(i)求的是i的素数因子个数。
首先需要处理因子个数。这个方法很多。
其实对于一个i来说,由于i最大是1000000,然而当2*3*5*7.....*17这时是最大能在这个范围的。其他数的素数因子数目必然小于这个。也就是f(i)最大是7。
这样只需要查询L到R区间内f(i)分别为1, 2, 3, 4, 5, 6, 7的个数,然后暴力枚举gcd的最大值就可以了。
当时人比较二,区间求和直接上了线段树,然后MLE了,然后换成树状数组才AC。。。。
赛后经人提醒才发现,这个完全没有点修改操作,根本不需要使用上述工具。直接用sum数组保存前缀和就可以。然后sum[j] - sum[i-1]就是[i, j]区间的和了。。。
不管怎样第一次使用树状数组,还是附上代码。
代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <set>
#include <map>
#include <queue>
#include <string>
#include <algorithm>
#define LL long long using namespace std; //GCD
//求最大公约数
//O(logn)
int gcd(int a, int b)
{
if (b == )
return a;
else
return gcd(b, a%b);
} const int maxN = ; char f[maxN];
bool b[maxN];
int L, R; struct Val
{
int v[]; Val()
{
memset(v, , sizeof(v));
}
Val operator+(Val x)
{
Val ans;
for (int i = ; i <= ; ++i)
ans.v[i] = x.v[i] + v[i];
return ans;
}
Val operator-(Val x)
{
Val ans;
for (int i = ; i <= ; ++i)
ans.v[i] = v[i] - x.v[i];
return ans;
}
}; Val d[maxN]; int lowbit(int x)
{
return x&(-x);
} void add(int pos,Val pls)
{
while(pos <= maxN)//x最大是N
{
d[pos] = d[pos] + pls;
pos += lowbit(pos);
}
} Val sum(int to)
{
Val s;
while(to > )
{
s = s + d[to];
to -= lowbit(to);
}
return s;
} Val query(int from, int to)
{
return sum(to) - sum(from - );
} void init()
{
int m = ;
memset(f,,sizeof(f));
memset(b,,sizeof(b));
for (int i = ; i <= m; i++)
{
if (!b[i])
for(int j = i; j <= m; j = j+i)
{
b[j] = ;
f[j]++;
}
} for (int i = ; i <= m; ++i)
{
Val tmp;
tmp.v[f[i]] = ;
add(i, tmp);
}
} void work()
{
Val p = query(L, R);
int ans = ;
for (int i = ; i <= ; ++i)
{
if (!p.v[i])
continue;
p.v[i]--;
for (int j = i; j <= ; ++j)
{
if (!p.v[j])
continue;
ans = max(ans, gcd(i, j));
}
p.v[i]++;
}
printf("%d\n", ans);
} int main()
{
//freopen("test.in", "r", stdin);
init();
int T;
scanf("%d", &T);
for (int times = ; times < T; ++times)
{
scanf("%d%d", &L, &R);
work();
}
return ;
}
ACM学习历程—HDU 5317 RGCDQ (数论)的更多相关文章
- ACM学习历程—HDU 5446 Unknown Treasure(数论)(2015长春网赛1010题)
Problem Description On the way to the next secret treasure hiding place, the mathematician discovere ...
- ACM学习历程—HDU 3092 Least common multiple(数论 && 动态规划 && 大数)
Description Partychen like to do mathematical problems. One day, when he was doing on a least common ...
- ACM学习历程—HDU 5512 Pagodas(数学)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5512 学习菊苣的博客,只粘链接,不粘题目描述了. 题目大意就是给了初始的集合{a, b},然后取集合里 ...
- HDU 5317 RGCDQ (数论素筛)
RGCDQ Time Limit: 3000MS Memory Limit: 65536KB 64bit IO Format: %I64d & %I64u Submit Status ...
- ACM学习历程—HDU5668 Circle(数论)
http://acm.hdu.edu.cn/showproblem.php?pid=5668 这题的话,假设每次报x个,那么可以模拟一遍, 假设第i个出局的是a[i],那么从第i-1个出局的人后,重新 ...
- ACM学习历程—HDU5667 Sequence(数论 && 矩阵乘法 && 快速幂)
http://acm.hdu.edu.cn/showproblem.php?pid=5667 这题的关键是处理指数,因为最后结果是a^t这种的,主要是如何计算t. 发现t是一个递推式,t(n) = c ...
- ACM学习历程—HDU5666 Segment(数论)
http://acm.hdu.edu.cn/showproblem.php?pid=5666 这题的关键是q为质数,不妨设线段上点(x0, y0),则x0+y0=q. 那么直线方程则为y = y0/x ...
- ACM学习历程—HDU5585 Numbers(数论 || 大数)(BestCoder Round #64 (div.2) 1001)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5585 题目大意就是求大数是否能被2,3,5整除. 我直接上了Java大数,不过可以对末尾来判断2和5, ...
- ACM学习历程—HDU 3915 Game(Nim博弈 && xor高斯消元)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3915 题目大意是给了n个堆,然后去掉一些堆,使得先手变成必败局势. 首先这是个Nim博弈,必败局势是所 ...
随机推荐
- java 开发环境安装
一.在mac上安装jdk 1. 下载Mac版本的JDK并安装 http://www.oracle.com/technetwork/java/javase/downloads/index.ht ...
- 请设计一个函数,用来判断在一个矩阵中是否存在一条包含某字符串所有字符的路径。路径可以从矩阵中的任意一个格子开始,每一步可以在矩阵中向左,向右,向上,向下移动一个格子。如果一条路径经过了矩阵中的某一个格子,则该路径不能再进入该格子。 例如 a b c e s f c s a d e e 矩阵中包含一条字符串"bccced"的路径,但是矩阵中不包含"abcb"路径,因为字符串的第一个字符b占据了矩阵中
// test20.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include<iostream> #include< ...
- beego的MVC架构介绍
beego 的 MVC 架构介绍 beego 是一个典型的 MVC 框架,它的整个执行逻辑如下图所示: 通过文字来描述如下: 在监听的端口接收数据,默认监听在 8080 端口. 用户请求到达 8080 ...
- git 工具 - 子模块(submodule)
From: https://git-scm.com/book/zh/v2/Git-%E5%B7%A5%E5%85%B7-%E5%AD%90%E6%A8%A1%E5%9D%97 子模块 有种情况我们经常 ...
- 模式识别之svm()---支持向量机svm 简介1995
转自:http://www.blogjava.net/zhenandaci/archive/2009/02/13/254519.html 作者:Jasper 出自:http://www.blogjav ...
- IdentityServer4 + SignalR Core +RabbitMQ 构建web即时通讯(三)
IdentityServer4 + SignalR Core +RabbitMQ 构建web即时通讯(三) 后台服务用户与认证 新建一个空的.net core web项目Demo.Chat,端口配置为 ...
- maven scope runtime
https://blog.csdn.net/ningbohezhijunbl/article/details/25818069 There are 6 scopes available: compil ...
- Linux搭建FTP服务器实战
首先准备一台Linux系统机器(虚拟机也可), 检测出是否安装了vsftpd软件: rpm -qa |grep vsftpd 如果没有输出结果,就是没有安装. 使用命令安装,安装过程中会有提示,直接输 ...
- SecureCRT连接VMWare中Linux
SecureCRT连接vmvare虚拟机ubuntu的前提条件1. 使用主机可以ping通虚拟机,或虚拟机可以ping通主机2. 虚拟机已经开启ssh服务,可以使用sudo apt-get i ...
- LeetCode:分发饼干【455】
LeetCode:分发饼干[455] 题目描述 假设你是一位很棒的家长,想要给你的孩子们一些小饼干.但是,每个孩子最多只能给一块饼干.对每个孩子 i ,都有一个胃口值 gi ,这是能让孩子们满足胃口的 ...